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1. — Introduction.

In this lecture we shall explain how the self-consistent band structure
problem, arising, for instance, in density-functional theory [1], may be solved
and we shall discuss the trends in the band structures and ground-state prop-
erties calculated for a variety of metallic systems [2, 3]. Rather than using
pseudopotential methods as in a previous paper, we shall use so-called
linear band structure methods [4-10], which can treat the full one-electron
potential from the nuclei and all the electrons. This allows us to treat s-, p-, d-
(and f-) electrons on the same footing and to use a minimal basis set. After
explaining the general idea behind the linear methods in sect. 2, we will
in sect. 3 consider the most simple, so-called atomic-sphere approximation
(ASA)[4]. In sect. 4 we develop the linear muffin-tin orbital (LMTO)
method [5, 6]. In the ASA this method is quite accurate for closely packed
systems and it has, together with its descendant, the angmented-spherical-
wave (ASW) method [11], been used in numerous calculations for metals and
intermetallic compounds. We will show how the set of MTOs may be trans-
formed analytically into sets of exponentially localized orbitals and we specii-
ically discuss two sets, the set of orthogonal orbitals [12] and the set of most
localized orbitals [13]. This is a new development and it leads to an extremely
simple first-principles tight-binding method whose transfer matrix factorizes
into screened canonical structure constants characterizing the lattice and poten-
tial parameters characterizing the atomic-sphere potentials placed on the lat-
tice. A tabulation of the canonical hopping integrals makes fairly accurate
(~10 mRyd) do-it-yourself calculations for arbitrary structures feasible.

Even self-consistent caleulations merely require the ability to solve radial
Schrédinger (or Dirac) and Poisson equations and to diagonslize a small
matrix. Moreover, with the localized orbitals it is easy to go beyond the ASA.

The trends in the band structures of 33 elemental metals will be discussed
in sect. 5 on the basis of the canonical bands and a tabulation of the self-
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consistent potential parameters. The cohesive and magnetic ground-state prop-
erties of the elemental metals are explained in sect. 6. In sect. 7 some of the
numerous applications of the LMTO-ASA and ASW methods to the electronic
structures, chemical binding, heats of formation and magnetic structures of
crystalline and amorphous metallic alloys are referenced. In sect. 8 we briefly
review LMTO and linear augmented-plane-wave (LAPW) [5, 6, 14] calcnlations
for metallic surfaces and chemisorbed layers. Our summary and outlook is
given in sect. 9.

2. — Linear methods.

In the first place, we want to solve Schrdodinger’s equation (in atomic
Rydberg units as used throughout this lecture)

(1) [— V2 + V(r)ly;(r) = B,y,(r)

for one electron in a potential V(r) characteristic for a system of atoms. In
the second place, we may want to construct the charge density,

oce

(2) n(r) = 2 [w:(r)*,

and subsequently use it to find the potential V(r) for a next iteration by
solving Poisson’s equation for the Hartree part and by using the (local) density-
functional description [1] for the exchange correlation part. After self-con-
sistency has been reached for the potential, we may, finally, wish to evaluate
the total energy of the electrons and nuclei in the Born-Oppenheimer approxi-
mation.

A typical potential is shown in fig. 1a), where, specifically, we show the
behaviour near the surface of a crystal. The one-electron states relevant for
most physical and chemical properties are those with energies in the neigh-
bourhood of 1 Ryd of the Fermi level, i.e. from about — 1.5 to 0.5 Ryd in
fig. 1. The contribution to the electron density from the lower-lying states
nearly equals the corresponding contribution in the isolated atom and it is,
in fact, often approximated by the core density calculated for isolated atoms
(frozen-core approximation). The energy range relevant for us thus begins
where the electron has sufficient energy to move from one atom to the next
and, hence, when its energy reaches the level of the potential between the
atoms.

Schrodinger’s equation (1) may be solved by seeking the wave function as
an expansion

(3) Z ZG(")EG,J' A P,(r)
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Fig. 1. — Self-consistent one-electron potential V(r) near the (100) surface of a Ni
crystal. This potential has been computed with the LAPW method [15]. Part a) is
the full potential, while part d) is its muffin-tin average.

in some energy-independent set of basis functions 4. (the reason for the bar
will be obvious later). The coefficients %, ; and the one-electron energies F;
are then obtained with the help of the Rayleigh-Ritz variational principle as
the eigenvectors and eigenvalues of the algebraic eigenvalue problem

(4) (H—EO)u =0

with the Hamiltonian matrix Hgy = (Fo|— V2 -+ V]7e> and the overlap ma-
trix Ogg = (f¢|7e>. In common with many other methods, such as the linear
combination of atomic orbitals (LOAO), the plane-wave and the Gaussian-
orbital pseudopotential methods, the linear methods employ this highly con-
venient procedure. The linear methods are, however, distinguished by the
way in which the basis functions are constructed and, in this respect, they
have more similarity to mathematically explicit, but numerically cumbersome,
methods such as the augmented-plane-wave (APW)[16] and the Korringa-
Kohn-Rostoker (KKR)[17] methods which are based on partial-wave scat.
tering theory. This we shall now explain.

The simplifving feature of Schrodinger’s equation (1) with a potential like
the one shown in fig. 1a) is that inside the atoms (or near the surface), where
the kinetic energy H,— 7 (r) is numerically large and the wave function varies
apidly, the potential is essentially spherically (or planar) symmetric [18].
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For the spherically symmetric part vp(|r — R|) it is, however, a trivial matter
to solve Schrodinger’s differential equation for any energy ¥ inside any atom.
The solutions are the partial waves

(5) (pRL(-Ey rp) = <Pm(E, Tr) YL(rR) ’

and each radial wave function gs, may be obtained by numerical integration
of the appropriate radial Schrodinger equation. 1n (5), and the following,
R denotes the position of an atom, and rp =r — R. Moreover, Y, is a
spherical (or real, cubic) harmonic and L = lm labels the angular momen-
tum. The question is now how to incorporate the energy-dependent partial
waves (5) in an energy-independent basis set, ¥q(r)?

p(B,r)

v l M !

0 R ro

I'ig. 2. — Bonding and antibonding states of a diatomic molecule.

To answer this we consider in fig. 2 a simplified model for bonding in a
homonuclear diatomic molecule with just one atomic orbital ir. In the
approximate LCAO description the bonding and antibonding states are

(6a) Ya(r) ~ 7o(r) £ (=)' fu(r — R)

and their energies, # — B and A, may be estimated from (4). Inside any of
the atoms, say the one at the origin, the ezact states can, on the other hand,
be expressed by the partial-wave expansions

B -
(61) Vi) = 3 @i ( "t ) i
.Ll
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where the bars indicate that we have included the energy dependence of the
expansion coefficients /i, which depends on the choice of the orbital, in the
normalization of the partial waves. In a correct description the tail of the
orbital j,(r — R) should, therefore, be augmented in such a way that it
equals

H=) S [G0(B, 1) — Guld, M1V p(r) By

inside the atom at the origin, and the head of the orbital ¥,(r) should be
augmented in such a way that it equals

@B,y 1) + §u(4, 1] Y (r)

deep inside its own atom.

Now, for a solid, there usnally exists a continuous band of states in the
range from B to A and, in this case, the entire energy dependence of the radial
wave functions @, (#, ) must be supplied by the tails of the energy-indepen-
dent orbitals from the other sites. This can be accomplished in a convenient
way if, instead of [@.(B, r) — @r(4, r)]/2, the tails are augmented by the
energy derivative functions

—
LN
~—

u(r) = [0v(B, 1)[3E],,

evaluated at some energy H, at the centre of interest. The heads should,
similarly, be augmented by the appropriate linear combination of

(8) @u(r) = @u(By, 7)

and phi-dot (7).
This means that we can express the augmented orbital as

(9) ZRL(rR) = Ziu(rli) + @RL("R) + z zéﬂ’u(rﬂ’)%ﬂ'v,m y
B

where ¢ and éR are defined to be zero outside a chosen augmentation sphere
for atom K. Moreover, y' is defined to be zero inside all augmentation spheres
and to equal the original, approximate orbital in the interstitial region between
the spheres. The normalization of the radial wave functions and the expan-
sion coefficients h can be chosen in such a way that the augmentations are
continuous and once differentiable at the spheres. It may be shown [5, 6, 10]
that, not only phi, but also phi-dot are orthogonal to the core states, and
the phi-phi-dot angmentation could, therefore, be viewed as a way of orthog-
onalizing the orbitals to the core states.
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The augmented orbitals (9) may now be used as basis functions (3) in a vari-
ational caleulation and, for closely packed systems where the potential is nearly
spherically symmetric in a large volume around eaclh atom, the augmentation
spheres are chosen as large as possible, either as touching muffin-tin (MT)
spheres like the ones indicated in fig. 10), or, even, as slightly overlapping,
« space-filling » atomic Wigner-Seitz spheres (AS). The large spheres have the
advantage that the «radial degree of freedom » is entirely described by the
phi-phi-dot augmentation and only one orbital per lm value (i.c. a minimal
basis set) is needed. That this works in a useful energy range is connected
with the fact that the Taylor series

(10) Pu(H, 1) A~ @i(r) + (B — ) ¢i(7)

truncated after the first two, linear terms describes fairly well the change of
the radial wave function throughout the atomic sphere (r<s), from the bonding
shape, @,(B, r), characterized by the boundary condition

(11) opy(B, r)for|, =0,
to the antibonding shape, ¢, (4, r), characterized by
(12) pi(4,8) =0.

Moreover, since we use phi and phi-dot in a variational scheme, the error of
the radial wave function (10), which is of second order in K — HE,, merely
gives rise to fourth-order errors for the emergy bands. That such a linear
method using MT spheres yields accurate results over an energy range exceeding
1 Ryd is demonstrated for Pd metal in fig. 3.

In order to set up a linear method, we may start out from any set of
envelope functions 7:(r) which is reasonably complete in the interstitial region.
Plane waves give rise to the so-called LAPW method [5, 6, 14, 15, 19-23], MTOs
[24, 25] to the so-called LMTO method [4-6, 10, 26-32] and Slater-type orbitals
to the LSTO method [33]. After we have chosen a set, each basis function is
then expanded in spherical harmonics about all the atomic sites R and each
component is continuously and differentiably augmented with the appro-
priate radial phi and phi-dot functions inside spheres of chosen radii sg.
While the calculation of the contribution to the spherically symmetric part
of the Hamiltonian matrix and to the overlap matrix from inside the spheres
is simple and general and will be given in the following subsection, the
calculation of the remaining contributions from the interstitial region and
from the nonspherical potential inside the spheres is usually cumbersome
and depends on the basis set [5, 12,15, 27-30, 32, 34]. With the new localized
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Fig. 3. — p-projected density of states for palladium metal. The Fermi level is at
approximately 0.5 Ryd above the bottom of the s-band. The first peak between 0.1
and 0.5 Ryd arises from the 4d-band. The picture is the result of 3 different LAPW
calculations [20] with the H,’s indicated. The (small) mismatch between the curves
indicates the size of the second-order errors for the wave function and the fourth-
order errors for the energies.

orbitals that we shall introduce in sect. 4 even this should now be straight-
forward. We shall not be concerned with the nonspherical terms in the follow-
ing but concentrate on the so-called atomic-sphere approximation.

3. — ‘Atomic-sphere approximation (ASA).

_ We now consider an infinite, closely packed solid and develop the simplest
version of the linear methods in some detail. In this version we assume that
space can be filled with Wigner-Seitz atomic spheres whose overlap we neglect.
This means that, éﬁectively, there is no interstitial region. The Wigner-Seitz
spheres are taken as the augmentation spheres, whereby the term j' in (9)

5 - Rendiconti S.I.F. - LXXXIX
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drops out, and the nonspherical components of the potential are neglected.
The one-electron energies obtained with the ASA are accurate to about one
per cent of the appropriate band width, e.g. to about 10, 15 and 5 mRyd for

transition metal s-, p- and d-bands.

3'1. Phi and phi-dots. — We first specify the normalizations of phi and
phi-dot. Let ¢@g(F, ) be normalized to unity in its sphere, i.e.

(13) f om(E, r)irtdr =1.

Differentiation with respect to energy then reveals that the corresponding
(unbarred) phi-dot is orthogonal to phi:

(14) f‘]’m(E, 7) Qsz(E, ryr2dr=0.
0

For the radial wave function, in each sphere R and for each angular momen-
tum I, we thus use a 2-dimensional Hilbert space spanned by the orthogonal

2
J—
P
107 r
0 S 1
1004
0

Tig. 4. — Radial ¢,, ¢, and @, functions for yttuum Here ¢ is orthogonal to ¢ and
D{p} = —1—1=—1. Moreover, P = strg, P = 0P[3(Bs?) and P = oP/o(Es?)

functions phi and phi-dot. These are our radial basis functions and an
example of such a pair is shown in fig. 4. In this figure the second energy
derivative function ¢ is shown as well, and we realize that for B — By<s?
~ 0.1 Ryd the term L(E — E,)*@(r) is two or three orders of magnitude smaller
than (7).
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We then come to the previously defined funections with a bar. The normali-
zation of the orbital in (9) is chosen in accordance with the definition

(15) Pr(?) = @m(7) .

For the energy dependence of phi-bar we may define

(16) Pri(l, 7) = [1 4 (B — EV)(;EZ]‘})EZ(E, ),
such that
(17a) ¢Rz(7'> = Pn(r) + @Pri(T) Og, .

This means that (my energy derivative function is a linear combination of the
orthogonal pair. The constants ¢ must now be determined in such a way
that the linear combination of ¢M(r3) functions in (9) matches continuously
and differentiably onto the tail of Zrw(re). This requires that, at the sphere,
the logarithmic derivative o :

(18) , D{@n} = 31n Gpy(1) /0 In rls,

has the correct value Em,yy- For MTOs this will be considered in detail in
sect. 4.

The Hamiltonian and overlap matrices in (4) will in subsect. 3’2 be expres-
sed entirely in terms of the expansion coefficients % and 6. To derive the
expressions it is convenient to use a combined vector and bra-ket notation
according to which (9) in the ASA is written as

(19) == 19>+ |[g>h.

As usual, the function |7z,>® extends over all space, while the functions |pg,>

and ;> vanish outside their own spheres. In (19), moreover, [¢), |p> and
|x>° are row vectors with components |pz.», ete. Similarly, (g, etc. will be
column vectors, while h and “(%[%X’", etc. are matrices. If T)mmw depends
on R'L’, then eq. (17a) must be generalized to

(o) P> = 19> + lg>o

with 5~being a nondiagonal matrix. For MTOs, however, this is not the case;
o is diagonal and h will turn out to be Hermitian. With the vector and bra-ket
notation and the inclusion of the angular variables (13), (14) and (A7) give
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the matrix equations

<SDI§D>: ” <SDISD>=01
(20) . _ . -
(plp) =0 and <plp>=p=o’+p.

| is the unit matrix and we see that o is the overlap of phi and phi-bar-dot.
Moreover, p is a diagonal matrix with elements

(21a) P = <G> =[gm(B, 21,
0

and we realize that 0 <Pp <Prim: The pg’s will turn out to be the small
parameters of a linear method and only those eigenvalues for which (H;— Hy) pt
are less than unity, with p being an appropriate average of the pg’s, will be
accurately given by the method. It may furthermore be shown that [5, 6]

(21d) ' P = — {Pr|Pr) = — Pri(8r)[Bpri(8r)]?
where the second energy derivative function was shown in fig. 4.

" 3'2. Hamiltonian and overlap .matrices. — The overlap matrix is seen to be
given by

(22) ©=(x[x>" =+ oh -+ (oh)* + h*ph = (I +oh)" (I +oh) + k* ph.

Apart from the on-site term of h (see (9)) the terms in the first part of (22)
are the one-, two- and three-centre terms, respectively. In order to calculate
the Hamiltonian matrix, we first note that Schrédinger’s equation yields

(23) (— V24 V)|p(®)) =Blp(®

and,l hence,

@) (Vi HV—B)g>=0 and (—V+V—E)p =g
Oonsequenﬂy

(25) H="(g|—Vi+V>° = (I +ohy*h+ (I + oh)* Ex(I + oh) + K*E,ph,

which, again, involves one-, two- and three- centre terms. In (25) E, is a
diagonal matrix with elements H,,, and, in case these are chosen independent
of R and I, then all one-electron energies may be measured relative to B, such
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that the second and third terms in (25) drop out. Technically speaking, E, in
this case commutes with the surrounding matrices and the second and third
terms in (25) may, therefore, be taken together with the overlap matrix (22).

One standard way of handling an eigenvalue problem with an overlap
matrix (4) involves Cholesky factorization of the overlap matrix and reduction
of the transformed Hamiltonian to a real symmetric tridiagonal matrix [35].
Another involves Léwdin orthogonalization [36] of the orbitals through multi-
plication of H — O in (4) from the left and from the right by 0%, For a
linear method the latter way is the more convenient one, because we essen-
tially know the square root of the overlap matrix; it is simply I - oh, as
(22) shows. The reason for this approximate factorization becomes obvious
if we insert (17) in (19) and use the orthogonality of phi and phi-dot:

(26) [X>° = |¢>(I +oh) + [p>h .

Assuming now that the matrix I -+ oh can be inverted, we may transform to
the following new set of (unbarred) orbitals

(27) 2> = [>=( 4 oh) = | + |@> h,
Where '
(28) ' h=h(l+0oh* or h1=0o-1 1,

In the new basis the Hamiltonian is immediately seen to be

and, since H must be Hermitian, and E, and p are diagonal,-h is Hermitian.
The overlap matrix in the new (unbarred) basis is

(30) O =1+ hph.

This means that the new set of orbitals is orthogonal to first order in
h~H—E, and that it is specified by the vector analogue (27) of the scalar firgt-
order Taylor series (10) for energy dependence of the radial wave functions.
We emphasize that, in the ASA, there is only one matriz which determines
both the Hamiltonian and the overlap matrices, as well as the coefficients in
the one-centre expansion (27) of the orbitals, and this is h. The additional
matrices, E, and p, are diagonal potential parameters. -

It is now a simple matter to solve Schrédinger’s equation. We first diago-
nalize H® = E, - h:

(31) uf Hu, = B® - with vt u=uut =1,
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obtaining the eigenvectors u; and the eigenvalues E®. The corresponding
wave funections, correct to first order in B, — E,, are

(32) p,(r) = E Are(Tr) UrL,; =

RL

= E [@pri(7g) -+ (ES-Z) — Euyz) @ri(1r)] Y (rR) Ugs,; ~
RL

~ > @ri(E;, 1) Y o(re) ¥as,s
BL

where the form (27) and the fact that u diagonalizes H® (31) have allowed
us to transform the multicentre expansion of overlapping energy-independent
orbitals into one-centre expansions of nonoverlapping energy-dependent partial
waves (to first order in energy). The eigenvalues Eﬁ” of (31) have errors of
third and higher order in their deviation from F,, because, so far, we have
neglected the second-order terms of the Hamiltonian and overlap matrices (29)
and (30). These terms are most simply taken into account by first-order per-
turbation theory. From (4) and (29)-(31)

0 = uf[H® -+ hE,ph— E(I + hph)lu; =
= EP + u; E p(EPI—E)*u,— E[1 + ujp(Eg.z)’ — E )u)

and the one-electron energy correct to third order in E; — H, is, therefore,
given by

E(jZ) -+ E EVRZPRZ(E(:;'Z) — E,m)? E I’u’RL,:ilz
Rl m
1+ EPRZ(Eg'Z)_EvRZ)Z E |’u’RL,jl2
)

14

(33) B;=

3°3. Tramsformation between orbital sets. — It should be realized that the
only thing special about the set |x> and the associated quantities carrying
a bar is that this is the set we started out from by augmentation of some set
of envelope functions |x*>. Our formalism is, however, valid for any choice
of o in (17), provided that the corresponding set of orbitals is continuounsly
difterentiable and localized. In the following sect. 4 we shall explicitly trans-
form, not only to the set of orthogonal orbitals, for which o = 0, but also to
a set of highly localized orbitals. The transformation between variouns sets
is given by (28) which states that o -+ b1 is invariant. Specifically, if for
some matrix o the matrix I - (o—o)h can be inverted, one may obtain the
following set

(34a) 5° = = U+ (@ — ) B = > + > B+ '
where
(34D) h=h{l+(@—0h™, or o+Hhi=o-+h7,
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and

(34c) 2" = 10" + (0 — o) hI"* = [>'[I 4 (0 — o) F] .

We have included [y like in (9) in order to stress that the transformations
have general validity and do not require the ASA. The correctness of (34)
follows from (19) and from

(35) 0> = [$> + > —o)

as obtained from (17b).

3'4. ASA density and total energy. — In order to perform self-consistent
calculations in the ASA, one merely needs the electron density, spherically
averaged in each sphere, and, for this purpose, the one-centre expansions are
sufficiently accurate. The Spherical density per spin is in general given by

(36) na(r) = (4m)-1 > f ol B, 1) Nu(B) 4B,

in terms of the projected densities of states

(37) NaB) =3 6(BE—B,) D |tz .
i

m

If we now expand phi in a Taylor series and define the projected number of
states

oce

Ep
(38) . (53] Ef-NRl(E) d.E = E E I’MBL’,-IZ
i m
and energy moments ’

Ep

(39) me = (B — Evm)qNRl(E) dF,

YRy —
the density may conveniently be expressed as

(40)  na(r) = (4m)=2 3 [ngp(r)* + mB2p(r)g(r) + mB{p(r)® 4 (r) §(r)}] .

This is valid to second order and we have dropped the subscripts Rl inside
the square parenthesis. The reason for going to second rather than only to
first order, as in (32), is that the eigenvectors (31), in fact, are correct to
second order. This will be proved in sect. 4. It should be noted that the
projection (37)-(39) is onto the nonoverlapping partial waves as well as onto
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the overlapping, nearly orthogonal orbitals. This follows from (32). Only the
first term in (40) contributes net I-charge to the sphere and the remaining
terms merely redistribute the I-charge within that sphere. This is seen by
integrating each term in the sphere and using (13), (14) and the energy de-
rivative of the latter.

The total energy of the electrons in the ground state may, according to
the density-functional theory [1], be estimated as

41) B =T+ j j n(r)|r — ' (') dor @'+ B fn(r)} -+ j v, (r)n(r) dor .

Here, v, is the electrostatic potential from the nuclei and n(r) is the total elec-
tronic density generated by some potential V(r) which, thanks to the variational
property of the energy functional (41), need not be the exact self-consistent
one, but, for instance, the self- consistent atomic-sphere potential. The first,
kinetic-energy term-in (41) should accordingly be expressed as the difference
between the total and potential energies of the noninteracting electrons in the

potential V(r). In the ASA, therefore,
Ep R
(42) T = f EN(E)AE— f 0p(r) a(r) dore dr
R
0

where N(H) and ng(r) now include both spin directions. In the remaining
terms of (41) the full, rather than the spherically averaged, density should
be used. Howevel, for calculations that do not require symmetry-lowering
displacements of the nuclei the spherical average is sufficiently accurate. In
this approximation, and including now the electrostatic interaction between
the nuclei, and using furthermore the local density-functional approximation,
the total-energy expression takes the most simple form

(43) B,=T-+ > > %/R—R'[ 2, + > Ug.

Here, 25 is the nuclear minus the electronic charge in the sphere at R. The
second term in (43) is thus the intersphere Coulomb (or Madelung) energy.
The third term in (43) is the sum of the intrasphere interactions between the
electrons and between the electrons and the nucleus in that sphere, that is,

/2
(44) - f [exc ) —22 . f )dar d’]ww,

where we have.dropped the subscripts E.
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4. — Muffin-tin orbitals.

We now choose a particular basis set and thereby obtain specific expressions
for the second-order Hamiltonian h, as well as for the family of first-order
Hamiltonians h. We shall use muffin-tin orbitals because, with these, the
dependences on structure and atomic-sphere potentials factorize and the con-
vergence in [ is so fast that the 9 s-, p- and d-orbitals per atom suffice for most
applications.

4°1. Multipole fields and screening. — In sect. 2 we mentioned that a require-
ment on the nonaugmented basis set (or envelope set) is that it is reasonably
complete in the interstitial region. Now, if the interstitial region is small, or
nonexisting as in the ASA, this requirement is mild, but we must, of course,
demand that each envelope function is so smooth that the radius of convergence
in the one-centre angular-momentum expansion (9) exceeds the atomic-sphere
radins. For fast [-convergence it is, furthermore, important that each function is
a reasonable solution of Schrodinger’s differential equation (1) in a larger region
between the atoms, because then the augmentation only needs to take place
for the few lower l-components (.e. the s-, p- and, for transition and noble
metals, the d- and, for rare earths and actinides, possibly the f-components).
Between the atoms the potential is rather flat (fig. 1) and the kinetic energy
B —V(r) varies between approximately —1 and 1 Ryd. It is, therefore, quite
accurate to choose basis functions whose envelopes are solutions of the wave
equation (V24- %%)7°= 0 with a small kinetic energy x*. This choice yields
far better Il-convergence than the use of Gaussian- or Slater-type orbitals.

‘The KKR and APW methods also employ wave equation solutions and
the potential is approximated by a spherically symmetric one inside touching
muffin-tin spheres and a flat one (of value V,,,) in the interstitial region.
Such a MT potential was shown in fig. 1b). In these scattering methods one
then chooses »*= F — V,.., such that 7°is an exact solution of Schrédinger’s
equation (for the approximate MT potential) in the interstitial region. In the
linear method we must, however, take a constant, energy-independent value
of kappa in order that our basis functions be independent of energy such that
we arrive at an eigenvalue problem (4). When evaluating the Hamiltonian
and overlap matrices, we must then include the integrals over the interstitial
region, or eliminate them by use of the ASA. We shall from now on use the
simplest choice, »2 = 0, whereby the wave equation reduces to the Laplace
equation,

.The envelope function, 7;,(r,), of a MTO is defined as an atom-centred
angular-momentum eigenfunction of the Laplace equation, and this means
that it has the form of a static multipole field, K, (rz), with the well-known [37]
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one-centre expansion

- . TR\ . e\ Yo(re) _
(45) Ky (rz) = ('?;) Yp(rg) = _E ('{0*) 5(21'—}— 1) Srr =

= E JR'L’(rR’)SE’L’,RL y
Ll

valid for r, <|R— R'|. Here, Jy, is the regular and K, the irregular solu-
tion of the Laplace equation and the factor 2(2! 4+ 1) has been included in
the definition of Jp, such that the matrix § is Hermitian. Moreover, we have
chosen to measure all distances in units of some arbitrary length, w, say the
lattice constant or, as we prefer, the average Wigner-Seitz radius of the lattice.

The expansion coefficients S are the so-called bare canonical structure con-
stants which only depend on the atomic positions (in units of w); they are
independent of the atomic-sphere potentials and radii. Expressed as two-
centre integrals [38] with the z-axis chosen along the interatomic vector R— R/,
of length d, the bare canonical structure constants are explicitly

Sasa = 2(’&0/61) ) Swa = (2\/3)(7’0/(’%)2 b Spp(a,n) = 6(’&0/d)3(2, - 1) 3

(46) | Sg=— (2VB)(wja)®, S patam = (6VB)(w]d)(—+/3, 1),
de(a,n,a) = 10(w/d)’(— 6, 4, — 1),

or

HML(] (21 +1)(21+ 1) ¥ o\ V1
0 &“ﬁzkﬁ+ﬂwl+l”2[ W—aMV]() '

1+ MWV — M1+ M)! d

For a general direction of the z-axis, e.g. the global z-axis of a erystal, the
structure matrix may be obtained from (46) or (47) and table I in ref. [38]
or, directly, from table II in ref. [9].

The requirement of fast Il-convergence (¢.g. »% equal to zero rather than
negative and large) seemingly leads to a long-range, power law decay (45),
for the MTOs. It is one of the objectives of the present lecture to disprove
this and to construet short-range « wave packets » from the s, p, and d bare
MTOs with % equal to zero.

Since we are going to augment the envelope function, not only inside
the atom at which it is centred but also inside all other atoms, we might
instead of (45) use solutions of the Laplace equation which are irregular also
at the neighbouring sites. In this way we can screen the field from the multi-
pole at R by surrounding it by multipoles at the neighbouring atoms and,
hence, obtain a very localized field. In order to express this in a convenient
way, we shall use the same combined braket and vector notation as in sect. 3,
and we shall write down transformations equivalent to those given there for
linear basis sets in general, With this notation the one-centre expansions of
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the bare multipcle field (45) about all sites of the structure are
(48) [K>* = |K>—|J>S,

where |K5, >~ extends over all space, whereas |Kj;», like |Jg.>, vanishes out-
side its own Wigner-Seitz cell. The on-site elements of § are defined as
Zero.

We now modify the regular solution |Jp.> by adding the amount — Qg
of the irregular solution, ¢.¢. we define

(49) \h=h—-KyQ,

where @ is a diagonal matrix. The multipole field screened accordingly is
defined in analogy with (48) as

(50) IK>* = |[K>— |I>S,

and insertion of (49) into (48) reveals that the screened structure matrix is
given by

(51) §=SI—@$)* or S§S'L-@=S$'! or S=S-LSas
and that the screened multipole field is given by the superposition
(52) [K>= = |Ky>(1— @S)~* = |K>=(I + @S)

of bare multipole fields. We see that @S is the «screening charge ».

We now want to determine @ such that (51) and (52) have the shortest
possible range. In order to avoid using f-, g-, etc. orbitals in the augmented
basis set, it is necessary to choose @, =0 for 1>2, as will be explained in
subsect. 4'9. Moreover, we want the screened structure constants and envelope
functions to be canonical, that is, independent of the atomic potentials and the
scale of the structure, and, therefore, choose @ to be site-independent. We are
thus left with the three parameters @, ¢, and ¢,. By numerical inversion
of the 9 x9 matrix Q;,,, — 8%, on a lattice with Bloch vectors k and sub-
sequent Fourier transformation into Sy, this matrix and the Q-values which
give it the shortest possible range have been determined [13]. The results
for the f.c.c., b.c.c. and s.c. structures are given in table I. The (-values
turn out to be independent of the lattice type and are given in (77a) in sub-
sect. 4°3. Sssa(d/w) is indicated by the full curve in fig. 5, and it is seen that the
results for screening on various lattices (f.c.c. = crosses, b.c.c. = open circles,
s.c. = full cireles) lie on the same curve. Moreover, for all three lattices con-
sidered the screening is essentially complete after the first and second nearest
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neighbours. The dotted curve in fig. 5 is the bare structure constant — 2(w/d)
from (46). The dashed b.c.c. and f.c.c. curves, which do not coincide, are the
s-structure constant screened in such a way that the s-MTOs are the nearly
orthogonal ones given by (27). This requires, as we shall see in (64), that
the (s are chosen equal to certain potential parameters named . The
results given by the dashed lines in fig. 5 were obtained for vanadinm,
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Fig. 5. — The bare (dotted), orthogonal (dashed) and most sereened (full) sse hopping
integral as a funetion of the interatomic distance d in units of the Wigner-Seitz radius

for the f.c.c. (x), b.c.c. (o) and s.c. (e) structures,.

The monopole field, K,(r) (52), screened on a b.c.c. lattice with the Q-values
for optimal screening (table I) is shown in fig. 6. The constant-K contours
in fig. 6a) and b) are for the (001)- and (110)-planes, respectively. The (001)-
plane contains the central atom and the second and third nearest neighbours,
and the (110)-plane contains the central atom and the first, second and
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[010]

b) 005 /\8,\ 0

[001]

05§

e g

Fig. 6. — Screened monopole field, K,(r), on a b.c.c. lattice. a) and b) show constant-K
contours from — 0.1 to 0.5 in a (001) plane and a (110) plane, respectively. In ¢) the
bare field (dotted) and the screened field (full and broken) are shown along the [110]-

direction from the central atom and to the third nearest neighbour,i.e. along the dotted
line in b).

third nearest neighbours. In fig. 6¢) the bare K,(r) and the screened K,(r)
are plotted along the [110]-direction from the central atom and to the third
nearest neighbour. The broken part of the curve in fig. 6¢) indicates that the
s-MTO will be obtained from the screened monopole field by augmentation
inside atom-centred spheres such that the rapidly varying parts of the screened

field will be substituted by linear combinations of the regular functions, phi
and phi-dot.
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4'2. LMTO Hamiltonians. — We now perform this augmentation and thereby
obtain explicit expressions for h, or h and o, in terms of the canonical quan-
tities S and @ plus some parameters, Cr;, Ap, and Qr,, which together with
the previously defined third-order parameter pp, (21) specify the spherically
symmetric part of the potential.

We thus want to use II—(>°° (52) outside the augmentation spheres and
Ix>® (19) inside. Since both functions are expressed as one-centre angular-
momentum expansions in, respectively, (19) and (50), the augmentation is
reduced to a continuous and differentiable matching at all sphere radii, sz.
In this way each radial function

(45) K (r) = (rfw)~1
and
(49) Jo(r) = [2(21 + 1) (/) — Q(rw)—'—1

should be matched to a linear combination of @g(r) and ¢g(r). The two
latter functions, we remember, were obtained by numerical solution of the
appropriate radial Schriodinger equation at the energies E, and E, -} df, and
by subsequent normalization in the sphere (see (7), (8), (13) and (14)). The
standard expression for the matching of a function, f(r), to a linear combination
of two given functions, a(r) and b(r), is

(53) f(r) = [a(r) W{f, b} — b(r) W{f, a}] W{a, b},

where
(54) W{a, b} = s*[a(s)b'(s) — a'(8)b(s)] = sa(s)b(s)[D{b} — D{a}]

is the Wronskian and D isbthe vradial logarithmic derivative defined-in (18).
"The Wronskian of phi-dot and phi may be obtained from (13), (24) and
Green’s second identity, i.e.

(55) 1={p =<p| = V:+ V= Bfp> = W{5, ¢} -
This holds for any phi-bar-dot as given by (17) because W{gp, ¢} = 0. Here

and in the following we often drop the subscripts El. For the radial solutions
of the Laplace equation we have

(56) W{K, J} = W{K, J} = w/2,

where the definition (49) of J has been used.
Since the tail of the multipole field (50) is expanded in J-functions only,
and the tail of the MTO (19) is expanded in p-functions only, these two radial
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functions, for the same RI, must have identical logarithmic derivatives at
their sphere radins. This means that, with Q given, J(r) is specified by (49)
and é(a') is specified by (17a) with

(57) 5:_m:_W{J,¢}~—W{K,¢}(_7'
Wi{J, ¢} Wi, ¢} — WiK, ¢}0

This has beeu derived from (63) with a(r) = ¢(r) and b(r) = p(r).

The relation between § and the logarithmic derivative of ®(r), which
equals the logarithmic derivative of J (r), is obtained from (49) by forming
WH{J, g} = 0, viz. '

(58) g— WL} _ s D .
WK, p} 2021+1)Dipt +14 1

Having obtained the matrix elements of the diagonal matrix o, we may now
obtain the matrix elements of h in the following way. From (53) with a(r) =
E-q?(?') and b(r) = @(r) we find

(69)  J0)>n)W{T, 0} and  K() —5(r) WHE, p) — p(r) WK, 5} .

The augmented multipole field (60) thus has the one-centre expansions

(60) [K>® —— 9> WIE, 3} — |9 [~ WIK, ¢} + W(T, p}'S],
where the W’s are diagonal matrices and where, according to (59) and (56),
(61) WAE, g} W{T, ¢} = wj2.

By comparison with the one-centre expansions (19) for the MTO we finally
see that

(62) i)™ = — 7> Wi K, 5} = [7a>™(2 Fpafu0)2
and that
(63) HY=E, 1+ h—

_p W)
WK, ¢}

w

where C and A are diagonal matrices.
From this derivation it is obvious that the LMTO formulae given above
are valid for any choice of. @’s, provided that the corresponding S (51) has

6 - Rendicontt S.I.F, - LXXXIX
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no poles. We might specifically choose [39] Q) equal to

Wi/, ¢} sjw)at D{g}—1

(8/w
(64) W{K, ¢} 2(2?—1—1 ) D{g} +1+1

=0

such that the corresponding o given by (57) vanishes, or, in other words, such
that 6}3(9') — @(r). The corresponding second-order Hamiltonian is

(65) H® =E,+ h =

= E,— \%’, g + ( ) W{J, o} SW{J, ) (%)i = C+ A SA!
with |J> = |J> — |K> @ and, from (61), W{J, ¢} = (w/2) W{K, ¢}~*. Moreover,
(66) S=S[—Qs'=S[I—(@—@Q)S]

(Note that the unbarred y, h, H, O, @ and o =0, as Wwell a8 S with a tilde
correspond to the orthogonal phi-dot, while the unbarred $ corresponds to
the regular J(r)-function and hence to the choice Q = 0.) Equations (65)
and (66) are among the most important of the present lecture. Equivalent
with these are eqs. (63) and

(28) H®» = E,+ h(l + oh)!

derived in sect. 3.

4'3. Potential parameters. — In (63) and (65) we have introduced the com-

mon notation for the first potential parameter ..
e

~ ) £
(67) C =B, — W{K, (p}/W{K, ¢} = H,— (2/w) W{K, (P} W{J, (P} 3

which determines the position of the « RZ band », and the second potential
parameter s

(68) ¥

It

- 2/10)%W7{ja (P} = — (w2} W{EK, é}—l 3

which determines the width and hybridization strength of the « Rl band ». Here,
again, the subscripts Rl have been dropped.

The meaning of these potential parameters may be illustrated by writing (53),
with a(r) = ('p(o'), b(r) = @(r) and f(r) = K(r), as

69)  E(r) —>— WK, g} [p(r) — o) WK, ¢} W{K, p}]=

= G w/A[p(r) + (C— By p(r)] ~ [K(s)/$(C, $)1H(C, 1) .
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This shows that C is the energy, to first order in its deviation from E,, for
which the radial solution of Schrédinger’s equation matches onto K(r) or,
in other words, the energy for which the logarithmie derivative function

(70) D(B) = D{p(E)} = d1n o(H, r)/d In 7],

takes the value — 71— 1. Equation (69), furthermore, shows that A% ig pro-
portional to the amplitude of the corresponding radial wave function at
the average Wigner-Seitz radins of the lattice, w. Specifically,

(71) 1~ (w[2)}(C, 5)[K(s) ~ (w/2)G(C, w) .

If @ is chosen independently of the potential, as is usually the case, then
(67) and (68) demonstrate that C' and A, and thereby H®W, only depend on
@(s) and D{p}, but not on D{p} (which is related to @(s) through (55)). In this
case the information about the energy derivative function is carried solely by
0, as seen from (57). This is consistent with the often-mentioned fact that in
the ASA H® is the Hamiltonian correct to first order, while H® is the
Hamiltonian correct to second order. If Q is chosen according to (64), it
becomes equivalent with D{¢}, and the corresponding C and 4, and thus
H® | then depend not only on ¢(s) and D{g}, but also on D{¢p}. Moreover,
C becomes the energy for which ®(E, r) has the logarithmic derivative
—1—1 at the sphere to order (C — E)%, and A* becomes the value (w]2)%-
‘@(C, w), to order C — E,.

To provide a better feeling for these potential parameters, we mention that
for electrons free with respect to some flat potential V, and for B, = C,

C,—V = (n/2)*s~: ~v 2.4752,
(72) Co—V =n2s ~ 9875,
C,—V ~ 20.1952

Moreover, for free electrons and E, = C, the potential parameter
(73) = (s/w)* 1 (As?)™ s 2[s39p( 0, 5)2] 1

equals unity for all I. The parameter u is thus named the intrinsic band mass,
relative to that of a free electron. Equation (72) and the value unity for (73)
in the case of free electrons may be derived [5, 6] from the recursion relations
for the spherical Bessel functions.

The third potential parameter ¢ defined in (64) may, from (69) and the
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analogous expression for J(r), be interpreted as the ratio [39]

J(s) @(s) -+ (C — E,)p(s) 1 o, w)

(74) VSR et - (=Bl T 2@1F 1) ¢V, 1)

where 7 is now the energy for which the logarithmic derivative (70) of (&, r)
at the sphere takes the value I. For free electrons, and for E, =1, we
find [5, 6] D{¢} = 31 + 5, and consequently

0.42 for I =0,

N 2145 s\
(75) Q= (8/10)27'14(21—{—1)(21 3 R (@) X ¢ 0.11 for I=1,
0.064 forl=2,

while, for I, = C,
(76) Q50,0 ~ 0.40(s/w), 0.09(s/w)® and 0.038(s/w)® .

In order to provide a feeling for the size of the « perturbation ¢ — @ in Dyson’s
equation » (66) we refer to table I giving the most localized structure matrix

and the corresponding ¢-values:
(77a) Q.0 = 0.3485, 0.05303, 0.010714  and Q, =0 for 1>3.

The many decimal places given here do not indicate that the localization of S
depends sensitively on the exact values of the Q’s, but, rather, the values (77a)
correspond to the logarithmic derivative values

(77D) Dopdd®) o =2.3,2.4,2.6  and D}, =1 for 1>3,

which were the parameters actually used in the numerical calculation [13]
of S. We prefer to give @ rather than D{g} = D{J} because the former are
independent of the sphere radii.

The fourth potential parameter is p defined in (21). It may be shown that
p~tis the size of the energy window inside which a linear method is supposed
to yield realistic results. Xor free electrons, and with E, = (, it may be
shown [5, 6] that

(78) p i, ~ 1857, 27s7® and 35572,
which, for a typical s-value of 3 Bohr radii, become 1.8, 2.7 and 3.5 Ryd.

For broad, free-electron-like bands it is customary instead of C to use a
potential parameter, 7, which is named the square-well pseudopotential. For
a monoatomic solid, and in the ASA, V, is the bottom of the s-band (if
E,~ V). For free electrons all Vs are equal and denote the bottom of the
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band. The potential parameter V thus equals the energy for which (77, 7)
matches onto to a spherical Bessel function with zero, i.c. the energy for
which the logarithmic derivative funection (70) equals {. The definition of T
is, therefore, analogous to (67):

(79) V=I,—W{J, g}/ W{J, 5},

and 7 may be obtained from the values of C, 1 and using the relation

(80) C—V=40Q.

The latter is proved by substitution of (49) and (68) in (79) and by making
use of (68):

oy Vihe) Wkg} Wi, ¢} + WK, g3 W(,g)
Wi, 5 WE, ) WK WK
— W, WK, 5@ = 212

The width parameter analogous to A (68) is defined by
(81) Tt = — (w2 W{J, )~ 2(20 -+ 1) (w/2)* (7, w)

and, if, again, we use (49) and (58), we realize that

(82) Y= — (w/2)[W{E, 3} @] = 1Q .
The parameter giving the intrinsic band mass near V is
(83) T =2(20 4 1)*(21 4 3)(w/s)2 1 (Is2)"1 ~ (21 + 3)[s*p(V, s)2] !
and, for a flat potential of valne V' , 1t equals unity for all 1.
The first- and second-order Hamiltonians (63) and (65) may be expressed

in terms of the potential parameters ¥ and I' instead of € and 1. The results
obtained using (80) and (82) are

(84) Ho =Yy -+ i“_%(ﬁ—l__ $)-1 T
and
(85) H(2) — V + I‘%(Q_l - S)__l r% .

4'4. Transformation to the nearly orthogonal set of LMTOSs from the canonical
most localized set. — In order to construct H® from (65) we need the @-depen-
dent structure matrix § which can be constructed from either of the two
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canonical matrices, the bare § or the localized 'S, through the matrix inversion
implied by (66). For a crystal we, of course, use the Bloch representation

(86) _}Ic{’L’,RL = z exp [tk T] gR'L',(R-{—T)L ’
T

in which the structure matrix is diagonal and the inversion (66) involves finite
matrices only. The typical dimension is 9M x9M, where M is the number
of atoms per primitive cell. In (86) T are the lattice translations and R and R’
label the atoms in the primitive cell. For the bare structure matrix the lattice
summations (86) require use of the Ewald technique [3, 10].

An alternative procedure which may also be used in real space and does
not require translational symmetry is to expand § like

(87) §=S+s@-a@sS+s@a-ase@-—aSs—+..,

but this requires that the series be carried to convergence and, hence, that
(@—@) S be much smaller than unity.

The best procedure is to start from h given by (63) rather than from h
and to expand (28) like

(88) H® — H®— hoh 4 hohoh — ... .

The superiority of this method arises from the fact that H® alone delivers
one-electron energies correct to first order in B, — K,, such that the inclusion of
more and more terms in (88) merely increases the accuracy further and further
away from H,. The series need, therefore, not be carried to convergence. Since,
in any case, the final result of a linear method, employing (33) for instance,
is correct to order (hp?)} only, there is no reason to go beyond third order
in (88) unless (ho),, is considerably larger than (hp?);;. As an example we
show in fig. 7 the total and the s-, p- and d-projected densities of states for
b.c.c. iron calculated in the ASA and without spin polarization. The potential
parameters may be found in table TII and the values of particular interest
at the moment arve H, ,, = —0.47, —0.33 and — 0.26 Ryd, Ors=—21,
—1.7 and 1.5 Ryd, and p}, = 5.1, 6.6 and 0.8 Ryd. Figure 7a) shows the
result of diagonalizing the tight-binding first-order Hamiltonian H® and fig. Te)
shows the result of diagonalizing the «fully Loéwdin-orthogonalized Hamil-
tonian »

(89) (O-HtHO* = O-*HO* ~ [l — hph/2][H® + hE, ph][l— hph/2] = H®.
This is obtained from (29) and (30) and is correct to all orders in ho and to

order (hpt)s. TIn fig. 7b), ¢) and d) we show the s- and p-projected densities
of states obtained by diagonalizing, respectively, H® — hoh, the three first
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terms of (88) and H® given by (65) plus subsequent third-order corrections
of the energy bands by means of (33). It may be seen that in the case of iron,
and with the E,’s used, the densities of states in the occupied part of the
band, i.e. up to about E, ~ — 0.125 Ryd, are given reasonably well even
in the tight-binding first-order approximation «). However, the high-lying
parts of the s- and p-bands are considerably compressed, but, of course, an
additional first-order calculation with E,’s chosen around 0.5 Ryd could have
yvielded good results in that energy region [40]. A procedure based on (89)
but with H® given by (88) has been used [41] in connection with the real-
space recursion method [42] to calculate the electronic structure of amorphous
metals.

If we wish to use (88), we need to construct h from (63) and o from (57)
and, hence, formulae for deriving C, A and 6 from the standard potential
parameters O, A and ¢, which are the ones usually given (and the ones that
we shall list in tables ITT and 1V).

From eqs. (67) and (68)

C—E, s C—E,

and from this plus eqgs. (68) and (49) we obtain
At— At = (2|} WK, o}(Q — @) = (@ — @)(C — Ey) A~
The relations needed are, therefore,

Z —O—Ev G“E"
(90) A== =g,

The expression for ¢ in terms of C, 4, ¢ and () may be obtained from (57)
and (64), plus (67) and (68) without bars. The result is

O

S

1 A - Q
(91) ‘(—_)_—-O"-‘E‘p"—'_——-—“ (02} 0 —= — Aj), .

S
|
D

4'5. Bract tail cancellation, the sercened KKR-ASA equations and the pic-
ture of Wigner and Seitz. — It is a characteristic feature of the linear methods
that the wave funection (32) is given, on the one hand, as a multicentre expan-
sion of energy-independent orbitals and, on the other hand, as a one-centre
expansion of energy-dependent partial waves. The latter in fact holds to
second, and not merely to first, order in E — E,. This we prove in the present
and following subsections by use of exact, energy-dependent muffin-tin or-
bitals constructed by augmentation of the multipole field (52) by linear
combinations of ¢(F,r) and @(E,r). We thus allow E, to vary and obtain
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the energy-dependent MTO from (59)-(63) by substitution of F for E,. As
a result

(92) X (ED® = 9B + [9(B)> h(E) + (B>
with

h (XN w7 w{](’q)(E)} e = 2\t
(93) h(B) = (5) W{J, ¢(B)} [—W + S] W{J, p(E)} (@—0-) =

= [P [—P(B) + SP(B)] .

The elements of the diagonal matrix P(E) are the (screened) potential functions

(94) P(E) = W{lf, (P(E)} _ W{K’ (P(E)} _ .P_(_E)
Wi, p(B)}  W{J,p(E)}—W{K,p(B)}Q 1—QP(E)
with
_ WK, p(B)} w\* 1 D(B) +1-+1
=y e (e

being the potential functions as they are normally defined. Apart from nor-
malization factors, (95) equals the cotangent of the phase shift in the limit
of vanishing x». That

(96) [P(B)] = — (w2 W{], p(B)}~* = A(B)*

is the square root of the energy derivative of tlhe potential function follows
from

_ WK, pB} W, 9(B)} — W{T, p(B)} W{EK, p(E)}

SO W7, p(B)}*

w2
- W, p(E)}

(Note that P without a bar corresponds to the regular, unbarred J(s)-function
and, hence, to the choice = 0. To a general choice of { corresponds P,
and to the special choice @ =@ corresponds P. This convention for the
potential function is thus the same as for the structure matix.)

We may now form a linear combination of exact MTOs

(98) 2B w(B) = |p() w(B) + [$(E)> h(E) u(B) - 2 (B> u(B)
(where u(E) is a column vector) and ask whether we can determine the energy,

E, and the corresponding coefficients, u(F), such that the continuously differen-
tiable function (98) is a solution of Schrodinger’s equation for that energy.
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In the ASA, where the @(F, r) are the exact solutions inside the spheres and
where we neglect the interstitial region, (98) is the exact solution when, ingide

each sphere and for all partial waves, the sum of the «tails» @(E))Ti(E) u(k)
cancels and we are left with the one-centre expansions

(99) X (ED° uw(E) = |@p(B))> u(E) = [Y(E)

NS

This tail cancellation condition thus gives rise to the set of linear homogeneous
equations

(100) [— P(E) -+ SIP(E)]" u(E) =0,

which are the KKR equations in the ASA [2-6, 13, 24] with screened (or bare)
potential funections and structure constants. The energies for which the
determinant ot P(H)— S vanishes are the exact one-electron energies and a
solution u(¥), normalized according to

(101) wE) uE) =1,

is an exact eigenvector.

For a monoatomic, closely packed solid the simple picture offered by (100)
1s shown in fig. 8. The energy band problem is reduced to that of finding the
eigenvalues for a single atomic sphere, with its spherically symmetric potential,
subject to a k-dependent and angular-momentum-destroying boundary condi-
tion imposed by the surroundings. The information about the atomic sphere
is carried by the logarithmic derivatives, which are functions of F, while the
information about the crystal structure is carried by the canonical structure
matrix, which is a funection of k. This is the approximate solution of the cel-
lular matching problem envisaged fifty years ago by WIGNER and SEITZ [43].

The KKR-ASA secular equation (100) is, however, far more difficult to
solve than the eigenvalue problem obtained with a linear method, in par-
ticular when the wave function coefficients are needed. Further shortcomings
of the KKR-ASA method are that corrections to the ASA are impossible to
include. For these reasons the transformation to a Hamiltonian formalism
is useful.

4'6. From the KKR-ASA equation to the LMTO-ASA Hamiltonian. — In
order to prove that the exact KKR-ASA equations are equivalent with the
eigenvalue equation

(31) (H® — Ehu =0

to second order in F — FE,, we need a second-order parametrization of the
potential funection, or, rather, of its inverse function F(P), which is the
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D) > S

atomic WS sphere crystal- structure

Fig. 8. — The atomic-sphere approximation. By substituting the atomic polyhedra by
Wigner-Seitz spheres, the band structure problem may be approximated by a boundary-
value problem in which the information about the atomic-sphere size and potential
is given by logarithmic derivative function D,(F), while the information about the
crystal structure is given by the structure constants, S}, .

energy corresponding to the boundary condition P (see (95)) for the radial
Schrodinger equation. A radial trial function with this boundary condition is

(102) Opi(Py 1) = @ri(7) + Prl(r) 0 P) .

This is just the scalar analogue of expression (27) for the nearly orthogonal
MTO such that w is the sealar analogue of h. The matching which determines
w as a function of P is analogous to the matching leading to (65) and (66)
or (85). Consequently, P is the scalar analogne of S and P is the scalar analogue
of S so that

(103) EP)®=FHy+ o(P)=C+ Pl —QP)"4=

=0+ PAl—(Q—QPI4=V (@ —P)T.
We now use the variational principle to determine E(P) and find, in analogy
to (29) and (30), that

(PB)|=V+V|OP) _ G
{D(P)|D(P)> "1 4 po(P)

(104) E(P) ~E(P)® =
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From the form (102) it is obvious that FE(P)® is the energy correct to first
order. The error of the trial funetion (102) is, therefore, of second order and,
due to the variational principle, the error of the energy estimate (104) is of
fourth order. Since (104) contains no terms of order w?, the estimate F(P)®
is, in fact, correct to second order. The corresponding second-order potential
function is obtained by solution of (103) with respect to P, i.ec.

) . (E—04 T ~
(108) PO =1 004~ 7—n ¢
and
(106) PB)® = W—0) 4™

1+ (Q—QE—0) 4~

Differentiation with respect to energy yields
(107) [P(B)2]+ =14 (Q —Q)(E — C) 4] 4.

N
If we finally insert the second-order model (106) and (107) in the left-hand
side of the exact KKR-ASA equatlons (100) and multiply each equation by
Al —'S(@— @)T1, we obtain

A1 —S(@— @)1 [— P(B)® + SIPE)]u =0

or

Al -S(@— @ [—{I-S(@— @HEI— C}A '+ S|Atu=10
or
(108) [— El4- CHAHI—S(@— Q)} ' SAYu=0.

These equations are identical with (31), as we see by comparison with (65)
and (66), and we have thus proved that the eigenvalues, E', and eigenvectors,
u;, of H® are correct to order (K, — E )

This proof could, of course, have been carried through somewhat more
easily had we from the onset chosen Q =@ and, hence, P(E)® = Py =
= (E — C)A-'. However, we believe that the more involved proof using a
general @ illustrates our «transformation theory ». An even more complicated,
and perhaps even more illustrative, proof is possible as well: In (102) we
could have used a nonorthogonal ®(r)-function and an @(P)-function similar
to (103) but with barred potential parameters. The estimate E@Pw =E, +
+ @(P) would only be correct to first order and the third-order estimatz (104)
would have contained nonorthogonality terms of order 6> Expressions (105)
and (106) would have contained barred potential parameters.
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We nave mentioned that ¢ has the dimension of a reciprocal energy and,
by comparison of (91) with (103), we see that o-! 4 E, is the energy corre-
sponding to the « phase shift» P = Q1.

47T, Accurate expressions for the wave function. — Since the eigenvectors
of H® are correct to second order, the radial wave functions, ¢(¥,;, ), entering
the one-centre expansions (32) of the wave function should be expanded to
second, rather than merely to first, order in E, — E,. When exact continuity
and difterentiability at the sphere is required, a further term, %(E,.—Ev)%
‘g(E,— B,)¢(r), with g(B,— E,) adjusted such that the resulting « third-order »
radial function matches the first-order function at sz, should be added.

If, as is usnally the case, H® ig truncated after the s, p, and d blocks,
we primarily know only the s-, p- and d-components of the eigenvectors uy,
and, when we include only these in (32), the one-centre expansion is merely
converged well inside the atoms, maybe up to the radius of the touching MT.
However, the multicentre MTO expansion in the first line of (32) is everywhere
continnously differentiable and forms a good solution of Schrédinger’s equa-
tion with only s-, p- and d-MTOs included. With h truncated after its s, D
and d blocks, the higher partial waves (I>2) in the expansion (9) of the
MTO tail are those of the unaungmented envelope function, #*(r), which is
identical with #'(r) in the interstitial region. This means that, with a trun-
cated Hamiltonian, #'(r) in (9) should be redefined as follows

(109) ' = [xD = [IK)>*— |K) + |J) S] (2B w)* =

= [(IK>*— |K>)(I + @S) + |J> S] (2B /w)? .
Here we have used (62) and (49)-(52) and S s truncated at the same point as h.
The «orbital» |7;,>* thus vanishes well inside its own. sphere, it equals the
MTO, |fz>%, in the interstitial region and its tail vanishes well inside the
neighbouring atoms.

In order to express the part of the wave function missing in the truncated
one-centre expansion (32), the multicentre expansion in terms of the most
localized orbitals is very useful. Suppose that we have diagonalized the trun-
cated H® and, therefore, know E{” and u,, we now transform to the set of
most localized orbitals. From (32), (27), (28) and (31) we obtain

(110) wi(r) = [>%u; = [>°( + oh)u, = [x>°(I —oh)u, = [y>°u;,

with

(111) Upp; =[1— 6Rz(E§'2)_ B )l

RL,j *

We note that the transformation (111) requires no matrix multiplication but
merely energy scaling. With (109) the part of the wave function missing in
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the truncated one-centre expansion (32) is thus

= z z (w/rp)y l Y L 2 z (Orrlpr+ QI'SR’L',RL)('?ZRZ//IU)éERL,J' +
B L

R L

+ Z z, ("'R'/W)L[?*(-%,‘*’ 1]t Y p(re) 2 2 SR'L’,RL(?‘ZRI/@U)é ERL,J' .

R L

The subscripts > and < are here meant to indicate that the radial function
vanishes, respectively, inside or outside the sphere at R’ with radius sg.
The cubic harmonics are

Y. = (4dn)*, Y e = (47[3) U (x, y, ) ,

(113) Y jostes gy = (1675)7}(322 — 1, /3(x2 — ¥?)) ,

Yd(yz,a:z,a:‘u) - (475/15) (yz7 xz? xy) )

where x = x/r, etc. The most localized structure matrix § and its param-
eters Q) are listed in table I. The K(r) or J(r) functions entering the super-
position (112) are, at most, those 9x(1 4 12 + 6) = 171 (f.c.c.) or those
9% (1 + 84 6) = 135 (b.c.c.) s-, p- and d-functions which are centred at the
atoms belonging to the two shells nearest to the region r. In order to obtain
the nonspheridized dengity, n(r) (2), for use in the total-energy expression

(41) eqs. (32) and (112) should be employed.

4'8. Exact overlap matriz and the combined-correction term. — It is often
desirable to go beyond the ASA not only for the evaluation of the electron-
electron interactions but also for the evaluation of the kinetic-energy term (42)
and, hence, for the one-electron Hamiltonian and overlap matrices. Since the
definition and construction of the MTOs and the transformations between
different MTO sets are independent of the ASA, it should be clear, in principle,
how to include the non-ASA terms in H and O. For this purpose the most
localized MTO representation is particularly suited. The simplest and most
widely used correction to the ASA is the so-called [6] « combined correction »
which adds to the sum of the sphere overlaps (22) the difference

(114)  =a—"&h" = |
= (2B8/w)(l + S@)[*(K|K)2 —~<K[K>"](I + @S)(2A/w)} =

=~ xve = (2B/w) “ KK (2 w)

between the exact overlap and the sum of the sphere.-overlaps, and which adds
to the sphere Hamiltonian (25) the above-mentioned difference times the
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average value, V., of the potential in the «interstitial » region, or, better
and more conveniently, (114) times

w<7ju 'Z;E'L'>:;[vl.‘(slx’) + 7"'1?’(81?’)]/2 ’

where vg(sr) is the value of the atomic-sphere potential at the sphere. In this
way the geometry violation of the ASA as well as the neglect of the higher
partial waves arising from truncation of tail expansions are corrected for.
The overlap integrals “(K|K>Z were originally [6] computed by Fourier
transformation of the bare MTO tails. As a consequence, the combined cor-
rection could only be applied to crystals and it effectively required the com-
putation of a second set of structure constants as functions of k. It is, however,
possible [32, 44], and even simpler, to calculate the exact integrals directly in
real space. If, for simplicity, we choose the z-axis along the interatomic vector
R'— R, the result can be expressed as the following two-centre integrals:

o 1d
w_3w<]fRs‘KR’s>ex = °°<SSG>°° - 5 E ’
3 3 (d\™
PPy = — % y  (ppoy* =0, ppT =3 (5) ;

(115) __ :
d\ 1 15 [ d\—2 d\—2

~tsiry> = Y2 (2N, =tpinm =V (A7 ipimye = -2 @)
5 (d 5({d 5 (d\~

°°<dd(7>°° = g (E) y °°<dd7'6>°° —_ g (&") y °°<dd6>°° == 6 (E) y

where, as usual, d = [R'— R|+ 0, and w is the scale factor (= average Wigner-
Seitz radius) chosen in the definition (45) of H(r) and of the potential param-
eters. The overlap integrals for a general z-direction may be obtained from
the two-centre integrals (115) by use of table I in ref.[38]. For the two bare
s-functions the integral in the sphere (of radius d) centred at one of the atoms
and passing through the centre of the other equals (d/w)/2, while the remaining
part-of the integral, of course, diverges. Since we are going to screen the bare
s-funetions, this divergence will, however, be exactly cancelled and it has,
therefore, been neglected in (115). For the on-site (R'= R) terms we define

0 for 1=0
=3 Kl Ky D2 =6, ’

(116) 0t | B D5 = O {(21~1)—l<sﬂ/w)—<21—1> for 1>0.
For >0 this is the value of the integral outside the sphere of radius sg,
because the (diverging) integral inside the sphere will be cancelied by the
on-site term from the second, spherical part of (114). For | = 0 the integral
inside the sphere will again be cancelled by the on-site term from the second
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part of (114) and the integral outside the sphere diverges, but will be can-
celled through the screening.

The second, spherical term in (114) may be evaluated from (48), and the
result of (114) in the « bare representation » is, therefore, seen to be

(117) = (K|KHE = “(K|K>2 + STK> + (JK) S — ST §

Here “¢(K|K)>2 is the matrix defined through (115) and (116) and (JK) and
(JJ> are diagonal matrices with elements easily calculated as

(118) w3 S Ky p = [4(21 + 1)1 (sz/w)*
and
(119) w3 Y = [4(21 + 1)%(21 + 3)[7*(sg/w)*"+® .

We finally transform to the screened representation and obtain for use in (114)

(120)  “(KNKH2 = (14 S@)“<K|K>2( + @S) +
+?<JK\(I + @S) + (I + SQUK) S — S S =

+SQ[(KIK>2 +<RD](I +@F) — [1 + S(@— QURH[I +(@— Q)]
Here, the second form is the more convenient, and <R2> and @ are diagonal
matrices with the elements

(121) {K?) _ JE)?  21+3 (i)—(ﬂ—l)
w? w3JJ) 4 w
and
2 A__ JJ) . 1 s 21+1

<K ®y in the first term thus effectively adds the integral inside the sphere to
the diagonal element (116) of “<(K|K)Z.

The combined-correction matrix depends on the atomic positions, the sphere
radii and the I-truncation. The augmentation spheres need not be taken as
space-filling atomic spheres, but, if they are, the combined correction is usually
small enough to be treated together with the third-order correction hph to
the overlap matrix (22) and hE,ph to the Hamiltonian (25), either by first-
order perturbation theory as in (33) or by the approximate Léwdin proce-
dure (89). For use in (33) we merely need the diagonal (j = ') matrix element
which equals (120) multiplied from the left by the vector

(QZRI//W)%[:L - 5RI(E§-2) — Eyp) ]t ;
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and from the right by its transpose. For similar sphere sizes, i.c. s, A~ 10, we
see from (77a) and (122) that @ — @ is rather small.

4'9. Comvergence in R and 1. ~ The condition that the long-ranged part of
bare monopole fields be screened is the condition of « charge neuntrality »,
which from (52) is seen to be

eo)

(123) 0= (Son+ @, Sps ns) =

R=0

= 1 + Q.[sso(on-site) + M, -sso(d,) 4 M, sso(dy) + ...].

Here M, is the number of first nearest neighbours and d, their distance from
the central atom. From the construction of the screened structure matrix ‘S,
through inversion of the finite matrix @* — §* and subsequent Fourier trans-
formation, it is obvious that S decays exponentially in real space, provided
that the determinant of @*— $* vanishes nowhere in the Brillouin zone.
The sum rule (123) applied to our most localized structure matrix given in
table I for the f.c.c., b.c.c. and s.c. lattices yields (1 4 1.06) — 2.02 — 0.04 —
= 0.00 for the f.c.c. lattice, (1 -4 1.08) —1.65 — 0.43 — 0.00 for the b.c.c.
lattice and (1 + 1.30) — 2.01 — 0.29 = 0.00 for the s.c, lattice. In all three
cases we merely include the zeroth-, first- and second-neighbour shells.

With an exponential decay not only the bare monop»le field, but all multi-
pole fields vanish as r — co, provided that infinitely many terms are included
in (52), that is, if we do not truncate S after a certain number of shells. In
fig. 6 we included the shell of third nearest neighbours. The general sum rule
is expressed as follows: The screened multipole field, KOL.(r), centred at the
origin may be expressed as the superposition (52) of bare multipole fields,
K p(rg), centred at the origin and at the neighbouring sites. The bare fields
may be expanded about the origin according to

(124) : - Kgu(reg) = z Z-KOL’(r) ToL’,RL,

=1 m'

which is analogous to (45), but valid for » > R. The condition that KOL.(r)
decays faster than any inverse power of 7 as » —» co now means that the
matrix elements [T(I 4 @S)],,,,» must vanish for all I'. The matrix T is not
Hermitian and is given by

TOL"RL =0 for I'<{ ? TOL',OL - 514'14 ’ TOZm’,RZm = 5m’m ’
(125) 1 d 243 3\d 1 /d\
Tﬂw:\_/—g’b_l)’ po(cr,n): _\/*5—, '\ﬁ E’ wa:% E )

such that the general sum rule for the screened structure matrix may be

7 - Rendiconti S.I.F, - LXXXIX
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expressed as

¥'—1
(126) 0= 61;’1:” + EQZ'SRL',OL" + E E E TOL',RLQZ_RL,OL"
& R>01=0 m
for all ' and L'.

The bare structure matrix is given by the simple analytical expressions
(46) or (47), but the screened structure matrix must be calculated numerically
for each lattice type. The results given in table I enable one to perform band
structure calculations for any compound whose atoms are placed on one of
the three lattice types, f.c.c., b.c.c., or s.c., or on a superlattice of any of these.
The band structure of Cu,Au may, for instance, be computed from the f.c.c.
structure matrix, that of CsCl from the b.c.c. structure matrix and that of
NaCl from the s.c. structure matrix. Moreover, the band structure of Si may
be computed from the b.c.c. structure matrix by placing « empty spheres »,
i.6. spheres with no nucleus, on every second lattice point [45]. The results
in table I furthermore enable one to perform calculations for localized impurities
using either a Dyson equation for the perturbation, 3H and 30, caused by
the change of the potential parameters at the impurity and near-neighbour
s1tes, or a Dyson equation based on the KKR-ASA equation (100) for the per-
turbation SP(E). In the ASA the latter procedure [46] is the more convenient
because SP(E) is diagonal. ’

We have chosen to use only the s, p and d multipoles for the construction
of the screened structure matrix although it seems obvious that with the
inclusion of f, and perhaps even higher, multipoles (i.e. ‘with Q, as an adjust-
able parameter) the screening in r-space could have been further improved.
The reason for not including f multipoles when constructing the canonical S
is that this would force us always to include the f-orbitals, even in calculations
for materials without f-bands in the energy region of interest. This is so
because in a basis set, without f-orbitals, (,:"o,(o') is the only radial f-function
present, as seen from eq. (9). This function has a logarithmic derivative which
is given by (58) with the Q,-value obtained from the screening calculation.
The proper, regular solution ¢,(E, r) of the radial Schrédinger equation, how-
ever, behaves like the regular solution of the radial wave or Laplace equation,
i.e. like

(127) ;i,(M/E—— V) = const X J,(r) = const X#?,

when [ is so large (1>1_,_~2) that the centrifugal term I(l + 1)7—? dominates, or
when the energy is far from a l-resonance. With Q, considerably different
from zero the only way of forming a radial f-function which behaves like (127)
is thus to form a linear combination of é,(o') and ¢,(r), where the latter func-
tions must be supplied through the explicit inclusion of f-orbitals. In con-
clusion, in order to avoid using orbitals with [-values for which the centrifugal
term -dominates the radial Schrodinger equation inside the sphere, we must
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choose

(128) Q,=0 for 1>1

max °

Our choice of I, = 2, rather than smaller than two, was necessitated by
our desire to localize the range of the orbitals to the two nearest-neighbour
shells. The values (77) obtained for @,, §, and @, can now be « understood »
a8 the sequence giving the fastest, and still smooth, increase of D, — [ for
decreasing 1. (D,—1 =0, 0,0.6,1.4 and 2.3 for | decreasing from 4 to 0.)

4'10. Moving the atoms. — The above-mentioned applications require that
the atoms are positioned on points of a lattice. If the translational Symmetry
of the positions is broken, say because we displace an atom or consider an
amorphous structure, the inversion of @*— § is not trivial. From our
numerical inversion for the f.c.c., b.c.c. and s.c. lattices two simplifying fea-
tures, however, emerge. First of all, the set of (-values found to give the best
localization for the b.c.c. lattice also gave good localization for the more closely
packed f.c.c. lattice as well as for the more loosely packed s.c. lattice. It thus
seems that, once found, this set can be used universally. Secondly, if for any
submatrix fm,m' with a given interatomic vector R'— R and given [ and V'
we rotate the orbitals such that their z-direction points along the interatomic
vector, then, for the three lattices considered, the resulting matrix elements
ssa, spo, ete. plotted as functions of the interatomic distance’ (d/w) in units
of the Wigner-Seitz radius of the lattice essentially lie on one «universal »
curve. This was illustrated for sso by the full curve in fig. 5 and it is illustrated
for the remaining « two-centre integrals » in fig. 9. We have, in other words,
obtained canonical curves analogous to (46) but for the most localized structure
constants, and these curves interpolating between the f.c.c., b.c.c. and s.c.
lattice points may now be used to construct localized structure matrices for
any structure withont the need to perform further matrix inversions.

This is, of course, only an approximation. Since the screening was performed
on a lattice, a screened L-orbital, like, for instance, the b.c.c. screened s-orbital
in fig. 6, has a «halo» on the neighbouring sites which makes it not strictly
transform according to the I-th irreducible representation of the full rotation
group but only according to the corresponding representation of the point
group of the site. For the two-centre integrals there may, therefore, depending
on the symmetry of the interatomic axis in the lattice, be elements for which
m 5= m'. Moreover, not all II'(m = m’') elements need to be identical. Such
cases may be found in table I and seen in fig. 9. As an example, in the s.c.
structure the nearest-neighbour ddd interaction is — 0.443 between x? — g2
orbitals but — 0.639 between xy orbitals. For well-localized orbitals these .
« deviations from axial symmetry of the surrounding medinm » are relatively
small, however, and it should be possible to treat them by perturbation theory
in real space, as we shall indicate below. On the other hand, for orthogonal
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Fig. 9. — The most localized two-centre integrals as a function of the interatomic
‘distance 7 in units of the Wigner-Seitz radius for the f.c.c. (+), b.c.c. (a) and s.c. (e)
structures.

orbitals, which decay exponentially but have long range, the two-centre integ-
rals are quite structure dependent as was demonstrated in fig. 5 for sso of
‘vanadium.,

Figure 9 shows that it does make sense to interpolate between (the axially
symmetric average of) the most localized two-centre integrals obtained by
screening on different lattices, and table I1 gives a simple interpolation for-

TABLE II. — Interpolation formula, Syn(d) ~ Sz exp [— 29), for closely packed structures.

880 spo sdo ppo ppn pdo pdr ddo ddrn ddé
S —0.56 1.10 —1.54 8.59 —16.95 —1.10 27.8 —1.27 11.88 —4.51
A 0.493 0.488 0.488 0.601 0.859 0.426 0.804 0.415 0.633 0.703
P b 4 3 2 1 4 2 4 3 4
q .3 4 4 -3 3 6 3 6 4 4
2= Adjw, d=interatomic distance, w= volume/number of atoms,

djw = 1.7589 for the eight first nearest neighbours in the b.c.c. structure,
1.8094 (f.c.c. twelve first nearest meighbours),
2.0310 (b.c.c. six second nearest neighbours),
2.5589 (f.c.c. six second nearest neighbours).
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mula which reproduces the b.c.c. and f.c.c. results rather well. The structure
matrix for a non-f.c.c., b.c.c. or s.c. structure may then be found by using
table II as a zeroth estimate of the off-site elements. The on-site elements
for > 0 depend on the local symmetry and should be estimated from the
off-site elements using S, = Smﬁfoﬁ. The element sso (on-site) should be
obtained from the sum rule (123). Starting from this zeroth estimate, f",
one should finally solve (51) iteratively, 4.6. construct the matrix

(129) Sit1=§ | s@s’
in real space and iterate until S+ a $.

4'11. Blowing-up. — In table I only the interactions between the s-, p-
and d-orbitals have been included, but, for rare earths and actinides, the inter-
actions with and between the f-orbitals are needed as well. Since we have
chosen Q,:O, the off-diagonal block $™ of the screened structure matrix,
where the index H refers to the « higher » orbitals (here f) for which @E =0
and the index L refers to the «lower » orbitals (here s, p and d), equals

(130) §HE — §HL | §HL QL §LL

a8 obtained from (51). We may thus obtain $&* (in real space) from the HL
block of the bare structure matrix given by (47) and the LL block of the
screened structure matrix given by table I. Similarly, the ff diagonal block
of the screened structure matrix may be obtained from

(131) SHY — §EE | §HL( QU | QL §LL Qr) s,

Expressions (130) and (131) not only apply to the f-orbitals but to any type
of orbitals for which we have chosen QF = 0. An important second example
is the calculation of matrix elements for orbitals at interstitial impurity sites.

4°12. Folding-down. — In certain cases it is desirable, at some expense of
localization, to reduce the number of orbitals to less than the nine s-, p- and
d-orbitals per site. Such cases include the folding-down of the d-orbitals for
simple metals, the folding-down of the chalcogen or halogen s- and d-orbitals
for chalcogenides or halogenides, and the folding-down of the $-, p- and
d-orbitals at vacancy sites.

The principle for folding-down is the following: If we wish to exclude
the « higher » subset [¥™* from the basis set (9) and, therefore, are left with
only one radial degree of freedom for each higher radial Schriodinger-equation
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solution, namely the tail funetion iH(o‘) of the reduced set

(182) T = 9™ + B T [ R+

then we better choose aq(o') approximately equal to the proper solution ¢, (¥, r).
In (132) the «lower » radial tail functions are unchanged from the original
basis set, i.e.

or, equivalently,
(133) 0,=10,, or Q,=0, .

We shall now specify the higher radial tail functions and let us, for the
sake of the argument, first consider the extreme case where we let Pul(r), and
hence the basis set (132), be energy dependent and let (pH( ‘) be equal to px(H, r)
times a normalization factor. The two functions thus have the same logarithmic
derivative or, in other words, we have chosen

(134) Qu(E) = [Pa(B)]™,

as seen by comparison of (58) with (95). Let us for further simplicity use the
KKR-ASA equations (100). In the down-folded « double-bar representation »
the one-electron energies are given by

(135) det [P(E) — S(B)] = 0

and, since from (133), (134) and (94)

(B)=P,(B) and Py(E) oo,

Nl

(136)
the secular equation (135) reduces to
(137) det [PH(E) — S“(E)] = 0

which only involves the lower block. This is exact within the ASA. The price
paid for the lower matrix dimensions in (137) is, of course, that the double-
barred structure matrix depends on energy and on the higher potential param-
eters through (134). Furthermore, the exact calculation of S'L(E) requires
evaluation of the Green-function matrix

(138) F™(B) = [PX(E) — §™],
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as we shall see in (142) below. The down-folding is, therefore, only useful
in those cases in which the lower and higher energy bands are so well separated
that, for ¥ in the lower range, the inversion of PX(E) — S can be simplified,
for instance, by neglect of the off-diagonal elements. In the higher energy
range the exact SY(E), of course, has poles at the zeros of det [P*(E) — §79],

The explicit expression for ?, as defined by (133) and (134), in terms of
the canonical energy-independent structure matrix that we started out from
may be obtained from the general transformation

wnl
il

(139) =S+ S@—@q)

derived from (51). With @ — @* = Q and
(140) @"— @ = [PY(H)] ' — @" = [PY(E)]1,

where the last expression follows from (94), the transformation yields for the
HH block

STE) = §T ST PE( )y} $TH( )
or

(141) ST(F) = P(B) F™ () $== |

Similarly for the HL block

(142) S™(E) = P E) FE¥(E) S5T
and for the LI block
(143)  S™(E) = §* 4 SU{P(H)]2 S(K) — S | S fum(pp) 5

These are the results anticipated above. Another way of obtaining the same

results is to eliminate the unknowns [ﬁH(E)]*%uH(E) from the KKR-ASA equa-
tions (100) in the barred representation.

Although the ASA energies are given in (137) Dy the lower block of §_(E)
alone, it is obvious that the higher radial functions are needed in the one-
centre expansion (99) of the wave function. Even if we are only interested
in the lower components u%(H) of the eigenvector, we do need the higher
components u™(F), because they are involved in the normalization (101). We
now determine the entire eigenvector w(E). In the double-bar representation
the lower KKR-ASA equations (100) are

(144)  [—PXE) + SHE)[PUE) I uX(B) + $7(5) [P(B)] u™(B) — 0,
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Since =PH(E) diverges according to (136) and since SUYE) (143) is finite, the
second term in (144) vanishes. The lower components of the eigenvector may,
therefore, apart from their normalization, be found by solution of the linear
homogeneous equations for the LL block. The higher KKR-ASA equations are

(145)  S™E)PUE) wiE) + [— PHE) + ST(B)PHE)] w(B) = 0.

Here the first term is finite, but, in the second term, PE(E) diverges and
[PE(E)]* vanishes. From (94) we, however, realize that

(146) B(®)[D(B)]+ = PEPE) =PEPE] ~ (B— 0)4-

iy finite and invariant. We may thus solve (145) for each higher component
uy(E) in terms of the (unnormalized) eigenvector u™(E). If we use (142) in
(146) and (145), the result is found to be

(147) [B(2) 4 w(B) = F=(B) S={PH(B) ] u'(B) .
Finally, the wave function normalization is given by

(148) 1= u™(E)" u™E) + u™ (B u(B) =

L BYH{I -+ [PH(B)]* % F¥(B) PY(B) F=(E) S™{P*(B)] ¥} u®

For ﬁH(E) in (147) and (148) and for Py(E) in (138) we may use the second-
order expressions (107) and (106), respectively.

If S is the most localized structure matrix and the higher bands, defined
as the zeros of det [P™(E) — '§79], are well separated from the lower ones that
we seek, then we may approximate 'STH by its on-site diagonal elements and
:FHH(E), therefore, becomes a diagonal matrix with the elements

(149) F o (B) ~ [PE(E) — Sppps] ™ 0w 010 &~ PE(B) 18500

In this case S“(F) as given by (143) is rather well localized. In the opposite
extreme, where ¥ lies within the higher bands, FE(B) is delocalized and so
is S™(H).

The reduction of the down-folded KKR-ASA equations (144) to an orthog-
onal Hamiltonian problem may be performed along the lines leading to (108),
because they merely involve left-multiplication by (A%)HI— SL(B) (@1 — @Y)] .
The result is the slightly energy-dependent second-order Hamiltonian, A=(B)o,
given by (65) with

(150) - §(B) = S=(E)[] — (@ — @) SH(E)].
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(This is the Hamiltonian given below in (162) with I substituted for ,Z.)
Alternatively, we may by the application of (63) with S*(E) substituted for
S form the first-order Hamiltonian H™(E)™, (This is the Hamiltonian given
below in (157b) with E substituted for ,E.) Subsequently we may use this
Hamiltonian in (88) and, further, in (89) to form more accurate but still slightly
energy-dependent Hamiltonians.

In order to go beyond the ASA and to arrive at an energy-independent
but nonorthogonal Hamiltonian problem, we must use the variational LMTO
formalism. We, therefore, now return to the muffin-tin orbital in (132). For
the lower radial functions we shall use (133), but for the higher functions we
must, instead of (134), use an energy-independent choice, e.g.

Ay

(151) Qu = [Pu(B)®] = H— 0, + @z .

Here, for convenience, we have used the second-order estimate (105) and ,Z
is an energy at the centre of interest in the lower bands, for instance the
average of the elements of the diagonal matrix E'. Equivalent with (151)
is the following choice of o

(152) EvH + 3;1 = 'pE ’

as seen from (91). The energy dependence which in the down-folded KKR-ASA
equations enters through F¥(%) will in the LMTO equations (4) be accounted
for to first order through the overlap matrix. Like in the down-folded KKR-
ASA equations the first problem is now to express the blocks h™ and h=C
entering (132) in terms of the known short-range matrix h (63) describing
the original orbital set. The transformation from the barred to the double-
barred basis is given by (34), which we now write in the following way

>
I
>
£+
=
ol
I
ol
=i

(153)

This transformation is equivalent with (139) and is solved in the same way.
The meaning of, and the expression for, the energy H,s + (05 — 6x)~* may be
obtained by comparison of (35) with the barred version of (102). The result is

(154) By 4 Oy — 0y) ™' = By + CT)H(PH(,,E)(2)) = EH 4+ ZHPH(,,E)(Z) EvEH,

which is the energy ,F «seen to first order in ,Z — H,y» from the H-channel
in question. ,E® is thus a diagonal matrix and, if all H-channels had the
same first-order accuracy, its elements would all be the same, that is ,E¥ =
= ,EI". The expression for Py(,E)® obtained from (151) and (94), or from
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_ _ An _ 1
(159) PuoB)® = = = | 52 + u— T

With the notation (154) the solution of (153) is

OH hHL — 1'EH__ E} EE__ HHHE()}-1 pHL
(1564) b — o [ i — Hw0)h
and
(157a) ﬁLL(l) - EII: + ELL — HI + ELH[VEH_ HHH(I)]~1 hEL

In (156a) we have given o™h™ rather than h™™ because it is the former which
enters the expressions for the Hamiltonian and overlap matrices to be derived
in the following. Moreover, in the MTO expression (132), the tail function
‘;%H(T) defined by the double-barred version of (17) is nearly proportional to
px(r) and has very little by-mixing of ¢y(r), and, if all E)’s (L and H) were
equal, this by-mixing would vanish. This means that oy and ?;ZH(T) are very
large and that h™ is very small, but that the coefficient of gy(r) in (132), i.e.
o™ h™, is « well behaved ». If ,F is close to all H,g’s, the numerator and the
denominator of the first factor in (156a) are equal and the factor has value
one. This is also the value when all F,’s are equal, so that the numerator and
the denominator both vanish. The second factor in (156a) would be a Green
function, GF{(E)V, evaluated at ,E™ if all ,H;’s were equal.

Had we instead of the h-transformation (153) used the S-transformation
(139)-(143) together with relation (63) between h and E, the results (156a)
and (157a) would have been obtained as

(156b) o™ h™ = o™(A™)! P(,B)® F™(, 1) S™(AY)} = [P*(,B)®] F¥(, ) S(Am)}

and

(1570) D = X 4 % — € (A%} $5(8) (A"}

The P and P™functions entering these equations as well as the definitions
(138) are the second-order estimates (106), or (155), and (107). That (157b)
equals (157a) immediately follows from (154). That the first equation (156b)
equals (156a) most easily follows from (154), (155) and the expression pre-
ceding (90). The second equation (156b) follows from the first by application
of the double-barred version of (91) plus (155) and (107). Expressions (156d)
and (157b) are usually more convenient than expressions (156a) and (157a).

The transformation from the original to the down-folded basis set 1s
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according to (34¢)

(158) |7L>oo — |'iL>cn + IEH>CD(3H__BH) EHL,

where the matrix involved is

(159a) (0® — of) A — [,EX — HHEW]~1 pHEL ,

(1599) (0% — o) h* = (A¥)™* F=™ (,) §*“(BH)* .

This was obtained from (156a), (152) and (154). One way of constructing
the down-folded overlap and Hamiltonian matrices,

(160) O ==(ix»= and  H™ == — V4 V[gH",

is' to start off from the full O (22) and H (25) and include the combined cor-
rection (114) and (120) and thereafter perform the transformation (158). This
is a general but computationally heavy method, in contrast to the simple
energy-dependent ASA method mentioned in connection with (150), and it

should only be used if one of the last two terms, [p™> A™ 4 [¥™>*, of the
MTO (132) give substantial contributions. That is, if the down-folding or
the combined-correction terms, or both, are large.

When this is not the case, it is usually advantageous to orthogonalize the
down-folded set approximately by application of the further transforma-
tion (27): '

(161)  [x™=( 4+ oA ™ = [ — 0" h™ 4 o Ao At — ...) =
=[x = 9™ + o™ h™ + [ h™ 4[>,
where, from (132),
(162) HIu2) — Ef—*_ Rt — Ef,‘ + ﬁLL(’ + ok ﬁLL)—1 —
— ﬁLL(l) _ T.'LLBL ﬁLL + ’—’."LLBLﬁLLBL . =

= C"+ (AY! S™(E)[] — (@ — @) S(,E) |7 (AT)? .
Here, A" was given in (157) and S™ in (143). Moreover,

(163)  o"h™ = o® RE(] 4 o"h™)~! —

— o 'F"‘HL — oE pEL oL ﬁLL + o ﬁHL o™ AL ok T.,LL _.
The nearly orthogonal down-folded representation (161) has the overlap matrix

(164) 6LL — 1 + ’N.'LL PL ELL + ELH(ZH)Z 'F,HL + co<xLilei>co
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and, due to the third term, this representation is less orthogonal than the
nonfolded representation (27). It is, however, not possible to apply our ana-
lytical Lowdin orthogonalization further because it is based on having, in
each sphere and for each angular momentum, a local orthogonal set from which
we then build the nearly orthogonal orbital set. (In (164) we have, due to the
very small by-mixing of ¢gg(r) to Dul(r), neglected the term proportional to py.)
The Hamiltonian matrix is

(165) F,LL — F’LL(2)+ ELL PL Ef,‘ ELL_I_ 'F,LH(’ + '3}1 EE[) ZH EHL+ oo<%m”7l%m>w )

It all By’s are the same, we can measure all energies relatively to this F, and
hence drop the terms proportional to E,. This was mentioned in connection
with (25). Moreover, in connection with (156a) it was mentioned that, if all
Bys are the same, then h™ vanishes, while 0% ™ remains finite. This also
applies to h™, as seen from (163). Consequently, also the term A o®A™ in
(165) vanishes and as a result only H™® plus the last, combined-correction
term remain in the expression for the Hamiltonian matrix, .e.

166 H A ﬁLL(2)+ 0 L[| TN
X X

This is exactly the result anticipated in our much simpler KKR-ASA treat-
ment which resulted in the energy-dependent orthogonal Hamiltonian H(E)®,
What is achieved with the variational LMTO method, apart from the possibility
of going beyond the ASA, is to fix the energy of the ASA Hamiltonian at ,H
(see (157) and (138)) and then to re-introduce the energy dependence via the
overlap matrix (see (164) and (156)). This is why the nonorthogonality is
essential, except at H,.

If in the overlap matrix (164) the three last terms are much smaller than
unity, then we may treat them by first-order perturbation theory like in (33).
A more accurate procedure is the one similar to (89) which is based on
approximate Lowdin orthogonalization specified by the matrix

(167) (6LL)-75 ~l— %'ELL p- (32 _12_'ELH(3H)2 REL _ %oo<%];l|%h>ao )

With this procedure the energy bands are obtained by diagonalization of the
Hamiltonian

(168) HILe) — (am)—iﬁLL(BLL)—% _ (6m)_}ﬁm(6m)_% .

In our down-folding formalism only fwo higher potential parameters enter,
namely the values of the potential function and its energy derivative, Py(,E)®

and Z.3H(VE)(2), at the chosen energy ,B. This is seen in (156b), (157b) and (138).
For similar materials, the higher potential functions are rather similar such
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that, if we choose the same value P, for all these materials and use

Ay
o — -
(100) ’,E = OH+ PI_II ( QH OH _l_ _P— —“QH
and (from (107))
_ Py Py Ab PR 4 0.—Qu PP —Qu
(169)  [— OP4(B)/oE ], =P, P, E_0, 4% A

as the two potential parameters characterizing each individual material, then
these ,I’s still fall « within the range of interest» and the scheme is suffi-
ciently accurate. Fixing P,(,H) has the advantage that the most involved
part of the down-folding (the calculation of F™® defined in (138) and used
in (156b) and (157b), plus the subsequent construction of the down-folded
short-range structure matrix S™ defined in (143) and used in (157b)) can be
performed once and for all for a given class of materials and structure. In
other words, a canonical description can been regained. The formalism be-
comes particularly simple, and the localization unaffected, if we can choose
P, = co. This is equivalent to taking @{ = Qy and, consequently, the lower
orbitals and the Hamiltonian matrix are unchanged. Melely the overlap ma-
trix is modified.

The higher radial wave function often has the «off-resonance» or «free-
electron » behaviour (127) and this means that the square-well pseudopoten-
tial Vi (see (79) and (105)) lies in the energy range of interest and that the
value of Iy (see (81)-(83) and (105)) corresponds to an intrinsic band mass Ty
not far from unity. This, for instance, holds for d-functions in simple metals
and for the s-, p- and d-functions in «vacancy potentials». In such cases
it is natural to choose P, = co, or equivalently

(170) B =7y
and
(171) PPPr =TIt

The down-folding (143) of the structure matrix is thus a partial unsereening
and the result, if calculated exactly, is the same as would have been obtained
in a screening calculation starting from the bare structure matrix but including
only the LL block. If the square-well pseudopotential essentially equals the
value v(s) of the potential at the sphere and the intrinsic band mass is close
to unity, one only needs to calculate the LL block of the partially unscreened
structure matrix, while the remaining terms of the down-folded Hamiltonian
and overlap matrices may be taken care of by the combined-correction term
(subsect. 4°8) containing LIL-matrices only.
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4°13. Ghost bands. — There are cases in which the removal of redundant or-
bitals from the linear basis set is not only a convenient way of reducing the
matrix size but is even a unecessity. Otherwise false roots, so-called ghost
bands, occur. In order to understand this, let us consider the case of Cd and
suppose that we are interested in the sp-like energy bands around the Fermi
level and, therefore, choose all B, = E,,. Then the LMTO method with s-, p-
and d-orbitals might become schizophrenic because, with only five d-orbitals,
it cannot decide whether to describe the 4d-bands far below E, or the 5d-bands
far above E,. As a result, the LMTO method might pick out the top of the
4d-bands together with the bottom of the 5d-bands and connect the two by
a steep ghost band crossing through the energy range of interest.

The obvious cure for this schizophrenia is to choose F, , closer to the 4d-
or closer to the 5d-bands, whereby only the nearest band will be picked and
the ghost band will disappear. This procedure is, however, not optimal, first
of all, because with E,, far from E, the weak d-hybridization of the sp-bands
near B, is not described in the most accurate way and, secondly, because the
matrix size is larger than necessary.

The better cure is, therefore, to eliminate the d-orbitals through down-
folding, e.g. with Py = oo, as explained in the previous subsection. In this
way the energy dependence of the inverse of the d potential function is only
correct to first order in E — ,E. This is, however, sufficient in this case in
which ,F lies between resonances.

From the formal point of view a ghost arises from a nearly singular behav-
iour of H® defined in (65), or rather of S given by (66), and the associated
long-ranged oscillations of the orthogonal orbitals. This is caused by the
vanishing of the determinant of some subblock (@%)~* — $"%. Considering the
fact that the zeros of det [P(E)— S] give the energy bands in the ASA, that
P(E) is a never decreasing, cotangentlike function of energy, that

— V_V{IQ ‘P(E)}
(%) P =0, ey
while
WK, §(B)
(64) | LA (AT BT

and that @(#) and ¢(E) are oscillating functions of energy « phase shifted »
with respect to each other, it is obvious that @' considered as a function of K,
behaves like P(E), but shifted in energy. Consequently, there are B, ranges where
det [(@F)~ — $¥¥] vanishes and they occur when the logarithmic derivative
of phi-dot is negative, 4.¢. they follow the Wigner-Seitz rules—for phi-dot
though—mentioned in sect. 2. The fact that usunally a ghost band, rather than
a divergence, develops in the energy bands is due to « damping» from the
remaining blocks of @1 — S.
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4°'14. Comparison to the traditional LMTO-ASA and ASW methods. — The
analytical transformation of the unscreened MTOs to a uearly orthogonal
set is fairly recent [12] and has only been applied in a few calculations [46-51],
first of all, in connection with solutions of the impurity problem [46]. The
most localized representation is presented here for the first time, and it has
so far only been applied to amorphous metals [41] in connection with the recur-
sion method [42]. All other solid-state applications have been of the tradi-
tional LMTO-ASA method [6-10] or of its closely related descendant, the ASW
method [11].

The traditional procedure involves computation of the bare structure ma-
trix §* on a k-space mesh using (46) plus the Ewald method for evaluation
of the lattice sums (86). Then, for given atomic-sphere potentials, .one solves
the radial Schrodinger equations and obtains for all R and I the potential param-
eters °C, °4 and ‘0, corresponding to the choice @ = 0, plus p. From °C
and °A and the bare structure matrix one then constructs °H® =oC + At SOAY
according to (63) and, from (22) and (25), the overlap and Hamiltonian ma-
trices are formed using %h = *H® — E,, % and p. The traditional combined-cor-
rection term [6], which is far more involved than the version presented in sub-
sect. 4’8, may be added. The eigenvalue problem (4) is finally solved by
numerical Cholesky factorization of the overlap matrix and reduction of the
transformed Hamiltonian to a real symmetric tridiagonal matrix [35].

The essential differences between the traditional LMTO-ASA method and
the ASW method are, firstly, that the ASWs are augmented by the radial-Schro-
dinger-equation solutions, ¢(V, ) and ¢(C, r), which match onto the spherical
Bessel and Hankel functions, J(r) and K(r), respectively. This approximation
to (&, r) by the chord at the fiwed points V and C'is less flexible and (usually)
less accurate than the phi-phi-dot approximation by the tangent at the arbi-
trary point E, used in the LMTO method. Secondly, in the ASW method
the overlap integral in the cell (rather than in the sphere) is computed from
the »* derivative of the bare structure matrix in the same way as that used in
the standard KKR method for normalization of the wave function. This pro-
cedure is simpler than the traditional combined correction used in the LMTO
method, but it does not correct for the neglect of the higher partial waves.

The advantages of the new localized LMTO method, which in prineciple
gives the same numerical results as the traditional method, are the following.
The orbitals have short range and there are no Ewald summations to be done.
This makes calculations for nonperiodic systems possible. Moreover, the Lowdin
orthogonalization may conveniently be performed via the power series (88)
and (89). The nonspheridized charge density and the combined correction to
the ASA are relatively simple to calculate, and the atomic spheres may even
be substituted by muffin-tin spheres and fairly large non-MT corrections to
the potential may be included. Conceptually the new canonical tight-binding
formulation is even simpler than the traditional canonical formulation.
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5. — Energy bands of elemental metals.

In the preceding sections we have developed a simple orbital theory for self-
consistent electronic-structure calculations in closely packed systems. Most
modern applications of the traditional LMTO-ASA and ASW methods, which
are based on this theory, aim towards an understanding of phase diagrams
and, so far, involve zero-temperature calculations of pressure-volume relations,
structural-energy differences and interatomic forces, heats of formation of
alloys and of 3d magnetic moments and structures. One of the first applica-
tions of the LMTO-ASA method was to self-consistent local-density [52] cal-
culations of the equilibrium lattice constants and bulk moduli, as well as of
the spin magnetic moments and susceptibilities, for the 33 elemental metals
K —Cu, Rb —Ag and Cs — Au [2, 3, 53]. These results agree with those [54]
obtained for the K and Rb rows with the far more elaborate KKR method [16].
The Fermi surfaces arising from these ground-state calculations are generally
in good agreement with the wealth of existing detailed dHvA. data [2] and,
for the nonmagnetic metals, also the energy bands show good resemblance
with those deduced from angular resolved photoemission experiments [55]. We
shall now review the band structures of these elemental metals as the simplest
application of the concepts defined in the previous sections of the paper.

The canonical, most localized hopping integrals S were listed in tables I
and IT and the self-consistent potential parameters C, 4, @, p and E, are
listed in table III. The results for ferromagnetic Fe, Co and Ni are given in
table IV. Each E,, has been chosen to lie at the centre of gravity of the
occupied part of the I-projected band such that m® =0 in (39). Moreover,
in the elemental metals w = s, where the experimental values of the Wigner-
Seitz radius may be found in tables V and VI. The information in tables I-IV
thus suffices to construct the band structures of the elemental metals using
manipulations of, at most, 9 X9 matrices, or 18 x18 matrices for the h.c.p.
structure. In the ASA, and to second order in ¥ — FE,, we have the following
three simple possibilities.

The first one is to transform the unbarred potential parameters in tables
ITI-IV into the barred ones using

t C—B, ~C—E  Q—Q
I A A B

S B
D=

(90)-(91)

and then form the first-order Hamiltonian

(63) ﬁ(l) — E’,_*_ E: E+ Ei ’S'Z%
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TaBLE III. — Potential parameters at experimental equilibrium atomic volume.
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K Ca Sc Ti v Cr Mn Fe Co Ni Cu
Rb Sr Y Zy Nb Mo Te Ru Rh Pd Ag
(s Ba Lu Hf Ta W Re Os Ir Pt Au
By (mRyd) s —270 -—340 —351 —351 —3850 —374 —438 —474 —497 591 — 545
—260 —320 —337 —337 329 _ 359 —381 —424 485 537 — 545
—243 —271 —377 —397 —399 _ 433 —464 —504 —565 —620 —638
p —247 —286 —264 —233 223 _ 997 —290 —325 —346 —370 —404
—241 —282 —260 —226 —208 —209 —235 —277 —348 —499 —450
—229 —246 —271 —242 223 _ 995 —246 —285 —354 —435 —491
d —233 —257 —222 —207 —198 —215 —248 -—263 —272 _989 — 357
—226 —250 —229 —219 —211 —9240 —245 —277 —330 —387 — 509
—214 —222 —230 —224 —209 — 949 —242 —269 —320 —383 —471
/] —214 —251 —251 —184 — 177 —18§ —233 —256 —264 —98] —359
—163 —220 —217 —190 —184 —197 —216 —242 —302 —375 —.496
—212 —219 —223 —193 —180 —193 —206 —220 —274 —357 465
C—E, s 31 16 74 136 188 215 184 182 174 161 105
(mRyd) 21 2 50 106 161 189 200 205 192 171 g9
18 27 10 45 80 95 98 99 92 76 27
P 347 418 642 837 1011 1099 1038 1053 1067 1063 961
334 400 607 804 1005 1092 1140 1160 1116 1047 878
308 473 645 804 982 1052 1094 1118 1086 1020 911
d 468 306 238 215 189 157 104 71 50 30 11
392 300 276 266 251 214 155 107 60 23 0
266 236 337 319 302 264 197 143 84 34 2
f 1160 1747 2422 3011 3552 3733 3999 3946 4367 4494 4415
920 1181 1634 2012 2378 2656 2814 2967 3112 3061 2998
771 989 1913 2225 2533 2707 2827 2908 2925 2991 2899
20 4 8 1031 1468 2318 2036 3611 3958 3743 3744 3779 3719 3325
(mRyd) 910 1256 1981 2629 3207 3542 3701 3755 3561 3223 2702
797 1323 2009 2544 3040 3302 3433 3480 3317 2988 2562
P 1045 1423 2171 2805 3320 3624 3446 3466 3507 3482 3162
970 1286 1957 2567 3129 3425 3566 3615 3447 3165 2705
868 1386 2099 2617 3117 3371 3507 3569 3441 3167 2796
d 621 411 394 414 418 397 319 280 256 230 174
544 469 541 614 667 651 601 539 440 337 220
386 449 646 715 783 773 728 672 569 448 325

8 - Rendiconti S.I.F, - LXXXIX
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TasLe III. — (Continued).
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K Ca Se Ti Y Cr Mn Fe Co Ni Cu
RD Sr Y Zr Nb Mo Te Ru Rh Pd Ag
Cs Ba Lu Hf Ta A\Y Re Os Ir Pt Au
20 4 £ §31 1630 2300 2867 3366 3202 3740 3416 4046 4146 4022
(nRyd) 610 831 1278 1649 1980 2254 2325 2429 2587 2385 2221
519 829 1603 1923 2220 2363 2451 2498 2443 2523 2280
Q% T 46 846 860 866 869 868 863 860 857 853 845
fiigzz‘* 1): ea7 848 863 871 875 876 874 872 868 862 850
952 865 854 861 866 867 866 864 860 854 843
p 694 685 702 711 715 711 697 691 687 682 071
11 706 728 746 758 753 744 733 720 709 693
T97 758 722 736 749 746 740 734 723 712 700
J 469 283 173 128 94 67 33 10 — 6 — 21 — 29
472 354 285 251 225 195 159 120 97 69 56
231 351 314 285 265 240 207 179 146 113 88
;402 561 553 550 550  50S 556 514 562 565 571
331 360 405 424 434 440 441 444 471 455 438
105 448 466 467 469 464 461 458 454 483 471
% (mEyd) s 1300 1840 3100 4200 5070 5560 5120 5060 5030 5870 4190
1150 1590 2710 3750 4690 5200 5420 5460 5080 4490 3560
1040 1840 2640 3490 4280 4680 4850 4990 4580 4030 3300
p 2000 2670 4000 5020 5900 6550 6470 6570 0660 6600 5920
1880 2470 3500 4250 4890 5560 6130 6580 6640 6280 5330
630 2280 3960 4700 5320 5880 6330 6690 6730 6360 5620
T 1190 810 850 950 1000 1000 860 800 770 730 610
1120 960 1140 1320 1460 1460 1390 1200 1110 930 710
a0 960 1360 1530 1700 1710 1640 1540 1360 1140 910

using the localized structure matrix.
binding form. From it we may then form the second-order Hamiltonian

(28)

(88)

This Hamilionian has the two-centre tight-

H(2) — E)r+ E(’ + BH)_I )

and perhaps even the third-order Hamiltonian (89), which is then diagonalized.
The second possibility is to use the nnbarred potential parameters from the
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Tasre IV. — Potential parameters at experimental equilibrium atomic volume.
+ Fe | + Co ] » N
E, (Ryd) s —0.486 —0.444 —0.505 —0.478 —0.523 —0.516
P —0.351 —0.283 —0.367 —0.313 —0.379  —0.359
d —0.274 —0.242 —0.292 —0.248 —0.295 —0.273
f —0.273 —0.220 —0.296 —0.235 —0.300 —0.267
¢ —E, (Ryd) 8 0.181 0.173 0.174 0.165 0.160 0.157
P 1.065 1.033 1.080 1.044 1.070 1.053
d 0.028 0.146 0.019 0.090 0.019 0.041
f 3.949 3.932 4.402 4.334 4.518 4.475
20 4 (Ryd) s 3.719 3.781 3.749 3.799 3.709 3.728
P 3.453 3.485 3.497 3.517 3.478 3.484
d 0.260 0.327 0.241 0.281 0.224 0.237
f 3.397 3.442 4.054 4.040 4.154 4.141
Q@ x2(21 + 1) 8 0.859 0.860 0.856 0.857 0.853 0.853
P 0.691 0.692 0.687 0.686 0.682 0.681
d —0.012 0.046 —0.019 0.011 —0.024 —0.016
f 0.513 0.516 0.563 0.561 0.565 0.564
p~* (Ryd) s "5.017 5.101 4.991 5.052 4.857 4.882
P 6.561 6.570 6.651 6.648 6.593 6.589
d 0.764 0.888 0.744 0.814 0.714 0.737
f 10.228  10.404 oo oo oo oo

tables and directly form
(65) H®=E,+ h= C + At §A?
with § obtained from (66), or from (87), i.e.

(172)  S=S[I—@S"'=S[l—(@— @) 5] =

=5+ 5@-@S+S@—-as@—as5-+..

The third possibility illustrated in fig. 8 is to use the KKR-ASA equations (100),
which give the energy bands as the solutions of

(173) det[P(E)—S]1=0,
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experimental equilibrium atomic volume.

K Ca Se T1 vV
Rb Sr Y Zv Nb
(s Ba Lu Hi Ta
Seep 4.862 4.122 3.427 3.052 2.818
(a.u.) 5.197 4.494 3.761 3.347 3.071
5.656 4.652 3.624 3.301 3.069
electrons s 0.616 0.849 0.757 0.685 0.637
qb( atom ) 0.633 0.905 0.795 0.715 0.657
0.634 0.799 0.886 0.818 0.770
P 0.309 0.656 0.674 0.722 0.693
0.273 0.526 0.587 0.659 0.649
0.237 0.334 0.645 0.768 0.776
d 0.071 0.480 1.542 2.539 3.605
0.084 0.544 1.575 2.536 3.579
0.125 0.841 1.426 2.324 3.332
f 0.004 0.015 0.027 0.054 0.065
0.010 0.025 0.043 0.090 0.115
0.004 0.026 0.043 0.090 0.122
tot 1 2 3 4 5
electrons 1.14 2.16 2.76 3.13 3.26
1 ( atom ) 1.15 2.20 3.04 3.66 4.02
1.16 2.24 3.12 3.88 4.40
» (mRyd) —363 — 501 — 630 — 724 —785
345 — 468 — 598 — 699 — 774
— 321 457 — 622 — 719 795
E, (mRyd) — 199 — 200 —166 —123 —111
197 —190 — 166 —119 — 98
193 187 — 153 115 — 90
r.m.s. (£ — Ey) s 43 74 86 89 94
(mRyd) 40 66 74 77 85
33 49 96 102 111
P 35 66 82 90 93
32 59 75 84 88
27 42 102 113 119
d 28 46 50 58 62
25 41 49 63 72
20 28 67 79 88
f 38 43 48 52 57
20 39 46 58 68
9 83 65 72 80
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Cr Mn Fe Co Ni Cu
Mo Te Ru Rh rd Ag
W Re Os Ir Pt Au
2.684 2.699 2.662 2,621 2.602 2.669
2.992 2.840 2.791 2.809 2.873 3.005
2,945 2.872 2.825 2.835 2.897 3.002
0.624 0.646 0.633 0.644 0.651 0.699
0.649 0.650 0.641 0.631 0.616 0.687
0.760 0.766 0.764 0.759 0.759 0.801
0.776 0.785 0.751 0.740 0.721 0.733
0.795 0.791 0.788 0.746 0.653 0.667
0.937 0.958 ©0.962 0.928 0.839 0.782
4.518 5.489 6.528 7.533 8.551 9.505
4.407 5.399 6.400 7.464 8.601 9.556
4.138 5.087 6.055 7.095 8.217 9.276
0.082 0.080 0.088 0.083 0.077 0.063
0.149 0.160 0.171 0.159 0.130 0.090
0.165 0.189 0.219 0.218 0.188 0.141
6 7 8 9 10 11
3.40 3.22 3.06 2.93 2.78 2.5¢4
4.36 4.27 4.14 3.76 3.23 2.75
4.86 4.92 4.89 4.58 4.04 3.45
—830 . —812 —810 —811 —803 — 766
— 828 — 844 — 849 — 821 — 770 — 706
— 850 — 871 — 883 — 863 — 817 — 1755
— 62 ~—119 — 125 — 134 — 150 — 145
— 33 — 42 — 57 —109 —202 — 186
— 15 — 6 — 4 — 36 — 133 —165
105 112 113 123 128 154
104 114 121 118 108 155
128 142 155 153 144 171
103 108 107 115 118 136
104 115 122 118 103 146
133 147 156 156 143 153
74 82 87 88 88 75
92 117 127 124 111 83
105 138 153 156 146 121
70 71 75 79 78 72
93 108 119 115 99 89
101 121 141 144 131 108
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where the second-order expression for the potential functions is

(106) P(E)® —

E—C —~ H— 07
7 [1 “|—(Q—Q)—A—“]

and a third-order expression is
(174) PE® :P(E + (B — B)¥)® .

We now discuss the overall features of the band structures of the elemental
metals using the factorization, exhibited above in (63), in (65) and (172) and
in (173), into canonical hopping integrals, which only depend on structure
but are independent of the potential and the lattice constant, and potential
parameters. We first consider the canonical hopping integrals and, since for
the most localized hopping Q — @ is usually so small that (88) or (172) con-
verge fast, while this is generally not true for the bave unscreened hopping
where @ — () = @, we start our discussion with the most localized canonical
hopping integrals. Then, because of the existence of simple analytical expres-
sions (46)-(47) for the bare canonical hopping integrals, we consider these and
we use them to verify the interpretation of the potential parameters V,, V,,
Tsy Tpy Cq and u, given in subsect. 4'3. Having in this way obtained a feeling
for how energy bands «are built » from canonical bands and potential param-
eters, we finally discuss the trends of the latter going through the rows of
elemental metals.

51. Canonical tight-binding bands. — For closely packed elemental metals
with 8 or 12 nearest neighbours of the same kind the environment of each
atom is so isotropic that the magnitude of angular momentum is fairly well
conserved. This means that the s-, p- and d-bands mix relatively little and,
in order to describe the rough features of the band structures, we now neglect
the II'-hybridization in the sense of dropping the off-diagonal blocks in (63).
(We note that this is not quite equivalent to dropping the interactions between
the [- and U'-localized MTOs because that would require dropping the off-
diagonal blocks of the full Hamiltonian and overlap matrices.) Since for
elemental metals and in the ASA the potential parameters are independent
of K and m, the neglect of the off-diagonal 1I' blocks of H® is equivalent with
dropping the off-diagonal blocks of §. We may, therefore, independently of
the potential and the lattice constant but for each crystolstructure, diegonalize
the [l-diagonal blocks of § and obtain the canonical tight-binding bands, gﬁ.,
where the Block vector k runs over the Brillouin zone and 4 is a band index
running from 1 to (2{ + 1) M with M being the number of atoms in the prim-
itive cell. The «unhybridized » 1 energy bands are then, to first order in
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E - Evl?

(175) Br = C,+ 4,8

and, to second order,

(176) E?1 = Evl + (E;‘z“ Evl)[l + 6Z(E]l\z_ 'E'ul):!_l )

or equivalently, and in terms of the unbarred potential parameters,

(177) B = C,+ 4,851 —(Q,—Q)S; 1.

To all orders in ¥ — ¥

»l

we have the implicit equation
(178) P,(E:) = 8"

with the potential functions being defined in terms of the logarithmic deriva-
tive function in (94) and (95).

The canonical s, p and d tight-binding bands for the f.c.c. and b.c.c. strue-
tures are shown in fig. 10 and 11 along the lines of high symmetry in the respec-
tive Brillouin zones. From the numerical values of the hopping integrals given
in table I it is a trivial matter to obtain these bands. The canonical tight-

I

\_
12

of 4 4k 41 4k 3 -
-3 (A - Lot Ll ot 14 A Iu
r 4 x zw @ L A r r KU Z X

Fig. 10. — The screened canonical s-, p- and d-bands for the f.c.c. structure.
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I 1 1 141 L1 1 11 .} b I |

r 4 H 6 N D A r zr NH F P
Fig. 11. — The screened canonical s-, p- and d-bands for the b.c.c. structure.

binding bands for the h.c.p. structure, which is the one most commonly found
for the elemental metals, may be obtained using the hopping integrals in
table IT plus the rotation matrices tabulated by SLATER and KOSTER [38].
For comparison with the f.c.c. canonical tight-binding bands in fig. 10 we show
in fig. 12 the full energy band structure of f.c.c. Ag [56].

The construction of an «unhybridized » energy band structure from a
set of canonical tight-binding bands and the unbarred potential param-
eters that we have tabulated follow most simply from (177): The canonical
[-bands are placed with their zero point at the energy C,, they are then scaled
with the energy 4, and, finally, they are distorted by the dimensionless param-
eter @,— Q,, which is of the order of 0.08, 0.07 and 0.01 for, respectively, the
-, p~ and d-bands of the metals considered. The result of such a construction
for b.c.c. vanadium is shown in the left-hand side of fig. 13.

Bands of different I’s, but belonging to the same irreducible representation,
can hybridize with each other, as seen by comparison of fig. 10 with fig. 12
and of the left-hand and right-hand sides of fig. 13. In order to describe this
hybridization with the terminology used above, it is necessary first to include
the off-diagonal blocks neglected in the inversion (172) of I— (@ — Q) S.
This has, in fact, been done in the left-hand side of fig. 13 and it leads to an
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Fig. 12. — Relativistic band structure of Ag neglecting spin-orbit coupling, as calculated
with the LAPW method and the self-consistent LD-ASA potential given in table III.
The zero of energy is taken at v(s) =

E(Ryd)

— 0.71 Ryd.
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Fig. 13. — Unhybridized energy bands corresponding to the screening given by
Q;= 0.435, @,= 0.0907 and Q;= 0.0095 (a)) and hybridized energy bands (b)) of

b.c.c. vanadium.

unhybridized description in terms of the (potential-dependent) nearly orthog-
onal orbitals. Thereafter the hybridization would be included via the off-

diagonal elements, A* S{‘;,l,,.

A%, of H®. An alternative—and presumably more

consistent—procedure consists of defining the pure bands as the eigenvalues
(175) of the diagonal blocks of the first-order tight-binding Hamiltonian H®,
The hybridization between these tight-binding bands is then described in the
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normal way by the off-diagonal elements, A8 .. A%, of H®. Finally, the
bands correct to second and third order in I — E, may be obtained by use
of (88) and (89) in the li-representation.

We now return to the canonical tight-binding bands in fig. 10 and 11 and
compare the position of the band edges with the predictions of the intuitive
Wigner-Seitz rules mentioned in sect. 2. According to these rules, the bottom
of the I-band is at the « bonding » energy B for which the radial logarithmic
derivative vanishes (11), and the top of the band is at the «antibonding »
energy A for which the logarithmic derivative diverges (12). On P scale the
range B/A, as obtained from (95), is — oco/2, — 12/6 and — 15/10 for the s-, p-
and d-functions, respectively. On the P scale (94), corresponding to the
canonical tight-binding s-, p- and d-bands, the B/A range is, respectively,
— 2.87/6.60, — 7.33/8.80 and — 12.92/11.20. For the bottom of the s-band
(I) the Wigner-Seitz rule is exact (provided that the structure is cubic and
that partial waves with I > 3 can be neglected), and so is our canonical result,
as will be demonstrated in the following subsection. In most other cases the
rules are merely approximate but, nevertheless, in quite good agreement with
the canonical band edges: For the range of the s-band we find (— 2.87,
I7/4.96, W,) for the f.c.c. structure and (— 2.87, I1/6.65, H,) for the b.c.c.
structure. For the p-bands the rangs is (— 6.69, L,./8.80, I};) for the f.c.c.
structure and (— 6.33, N,./8.80, [';) for the b.c.c. structure; here the value
at the top is exact. Our f.c.c. d-band range is (— 12.62, X,/12.39, X; and W),
while the b.c.c. range is (— 13.80, H,,/14.16, N,).

5'2. Bare canonical bands. — For certain states the symmetry is so high
that only one partial wave with [ < 3 is allowed to contribute. In cubic crys-
tals such states are, for instance, I'y(s), I'y;(p), I'1o(d) and lea(d)' The remaining
high-symmetry states of this kind in the f.c.c. and b.c.c. structures may be
identified in fig. 10 and 11 as those where, for a given k, the irreducible label
occurs for only one set of I-bands. For these states the energy in the ASA
is given exactly by the «unhybridized » expression (178) (and to second order
by (177) or (176)) regardless of our choice of @,, @, and @, i.c. regardless of
the range of the orbitals chosen. Of course, for other states the energies obtzined
from a canonical band do depend on the @’s, and only the fully hybridized
energies are representation independent.

We now make the traditional choice, @ = 0, so that we can use the simple
analytical expression (46)-(47) for the canonical hopping integrals. The «un-
hybridized » bare ! energy bands are given by

(179) By = 0+ 4,81 —Q,87) 7 =V, + I (¢ — 8)7
or by

E—C E— 0\t I 1
1 k-: Y ! ! - L b —
( 80) 17 -PZ(E) Al (1+Q1 AZ ) -I’TL—ETQZ’
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where, in addition to (177) and (178), we have nsed (85) and (105), which are
more appropriate for free-electron-like bands. The bare canonical bands Sy
are shown for the f.c.c. and h.c.p. structures in fig. 14 and 15. The b.c.c.
bare canonical bands may be found in ref. [2].” From the analytical expressions
for the hopping integrals the following properties of the bare canonical bands
may be derived [6]:

Since S, is zero, the centre of gravity of a bare canonical band, averaged
over the Brillonin zone, is zero. The centre of gravity may be shown to vanish
also for each individual k-point, except for the s-band and for the p-bands

at k=0,
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Fig. 14. — The bare canonical s-, p- and d-bands for the f.c.c. structure.

The width of a bare canonical band with 754 0 may conveniently be esti-
mated from the following expression [6] for the second moment (see also
eq. (47)):

(181) 8= (21410 3 B2V faskistr =

K3

41! w\2i+D 21+ 1 2q0\2(21+D
4(2141) (‘) )' 2 z - e — - .
(201 Z\d d
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Fig. 15. — The bare canonical s-, p- and d-bands for the h.c.p. structure with cla =

= (8/3)%.

Here BZV is the Brillouin-zone volume which equals (27)® times the inverse
volume of the primitive cell. In the last approximation we have used Stirling’s
formula, which, for our purposes, is sufficiently accurate for all I > 0. The
second moment (181) only depends on [ plus the distances to and the numbers
of atoms in the various shells. For the f.c.c. and b.c.c. structures these are
given at the bottom of table II. Due to the high power 2(2] + 1) essentially
only the first-nearest-neighbour shell contributes and, for closely packed struc-
tures, the ratio of the Wigner-Seitz radius to the nearest-neighbour distance
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2w/d, varies between 1.10 and 1.14. If we assume that the density of states
is rectangular on the P, scale, the second moment yields the rough measure

. 12(214+1)- M, |?* (2w)21+1
18 1984 ~ -1 2u
(182) [1267] [ o } -

of the bare canonical I-band width. Without the Stirling and nearest-neighbour
approximations we obtain for the f.c.c., b.c.c. and h.c.p. (¢/a = (8/3)*) strue-
tures, respectively, 18.8, 18.7 and 18.6 for the bare canonical p-band widths
and 23.8, 23.5 and 23.6 for the bare canonical d-band widths. Nearly the
same results are obtained from (182). By comparison with the results in
fig. 14 and 15 we realize that these estimates are quite accurate and they also
compare well with the Wigner-Seitz results of 18 and 25 mentioned in the pre-
ceding subsection. : _

The bottom of the bare canonical s-band, which in cubic structures is the
I',-state, occurs at minus infinity due to the long range of S (46). This is
in accord with the exact Wigner-Seitz rule mentioned in the previous sub-
section. (In order to avoid this divergence in fig. 14 and 15, we plotted
[1 — (2/m)® 8%]7* rather than S%. This corresponds to nsing (179) with V, =0,
I'; =1 and @, = (2/n)* ~ 0.40, which is the free-electron value given in (76).)
By Fourier transformation of the unscreened monopole field S, we find that,
for k—0,

(183) 8% > —6(ks)2+ const and = E* >V 4 k7, .

The last result was obtained wusing (179) and (83). We have thus verified
that the potential parameter V, defined in (79) marks the bottom of the
s-band and that 7, defined in (83) is the s-band mass.

For the bare canonical p-band one subband, the «longitudinal acoustic
branch », is discontinuous at the centre of the zone and it is only through
hybridization with the s-band that the resnlting energy band becomes con-
tinuous. By Fourier transformation of (46) we find that
(184) 8¢ > —+/18(ks)~t, S, —>—12 and 8 —6
for small but nonzero values of %k in the z-direction. The range (— 12/6) of
the bare canonical p-band thus exactly follows the Wigner-Seitz rules. For
the hybridization between the sso- and ppo-bands near k = 0 the unbarred
version of the tail cancellation condition (the KKR-ASA secular equation)
yields

(185) [Ps(B)(ks)*/6 + 1][P,(E) + 12] =18..

We see that now the ppo-like subband tends towards the value 18 — 12 = 6
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for & — 0. This equals the common value of the two transverse and the
longitndinal branches at & = 0 and, hence, the longitudinal branch of the
energy band 4s continuous, regardless of the s-potential parameters. For the
sso-like band (185) yields

(186) By =V, 4+ kD, (V) |r, ~ V,+ k7,(1 — 7,(V,— V) s?[5) ]t

for k -0,

if we use the parametrization (180) of the s-potential function, the relation
(83) between Iy and the mass parameter 7, and the definition (95) of the
p-potential function. In the second equation we have parametrized the p-poten-
tial function too, and we have expanded to first order in V,— V,. By com-
parison with (183) we realize that the mass of the bottom of the sp-band
deviates from 7, unless the s and p square-well pseudopotentials coincide.
Expression (186) is a well-known result originally derived by BARDEEN [57].

The shapes of the bare canonical d-bands are fairly similar to those of the
canonical tight-binding d-bands, as may, for instance, be seen by comparison
of fig. 10 and 14 for the f.c.c. structure. Moreover, @, in (179) as well as Q,— Q,
in (177) are both relatively small, such that the P, and the P, scales are similar.
The extent of the f.c.c. and h.c.p. bare canonical d-bands are, respectively,
(—16.40, X,/10.94, W,) and (—15.01, M,./10.36, M,.) and, hence again, we
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Fig. 16. — The bare canonical f-bands for the f.c.c. structure.
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find a confirmation of the Wigner-Seitz result (— 15/10). The width of a
transition metal d energy band is thus approximately

(187) 25/, = 25[ g 52

and the centre of gravity of an «unhybridized » d-band approximately falls
at CO,.

Due to their simple analytical form, sufficient short range and good accuracy,
the bare canonical d-hopping integrals (46) have been frequently used to de-
sceribe transition metal d-bands [7-10, 58, 59]. For the same reasons the bare
f-hopping integrals (47) are useful for describing the f-bands of the light acti-
nides and cerium [10, 60-62]. In fig. 16 we show the f.c.c. bare canonical
f-bands. These have low- and high-energy tails such that their range of approx-
imately (—25, I',,/20, L,) exceeds both the Wigner-Seitz range (— 18.67/14)
and the band width 30.7 obtained from (182). The hybridization with the
bare s-, p- and d-bands may be described in a convenient way using (47).
For quantitative calculations of the entire band structure we, however, prefer
using the tight-binding representation with the f-related hopping integrals
derived from (130), (131) and (47).

5°'3. Potential parameters and trends. — The relative band energies, the
Fermi level and the band masses for the Rb series are shown in fig. 17. Since
the Wigner-Seitz radii vary substantially, as seen in table V, the positions
with respect to the bottom of the s-band have been multiplied by s2, such
that identical values of (C,—V,)s? etc. lead to identical band structures
when plotted as functions of ks. For free electrons the masses are unity,
Vi="V,=7V; and (C;— V,)s? = 20.2, as mentioned in subsect. 4'3.

Of the many trends apparent in fig. 17, the most significant is the develop-
ment of the 4d-band from being empty and free-electron-like to being an
occupied core level: As the atomic number increases, the position of the
4d-band decreases and its mass increases, becaunse the added electron only
partially screens the increased nuclear change. The added electrons essen-
tially have 4d character as seen from the entry n, in table V and the screening
experienced by the less localized, i.c. smaller-mass, 5s- and 5p-electrons, is,
therefore, rather complete, so that their potential parameters remain free-
electron-like. The number of non-d-electrons is thus fairly constant equal
to 1.540.1 through the series and, apart from fluctuations due to structure
in the densities of states, the position of the Fermi level is nearly constant,
when scaled as in fig. 17.

The bottom of the 5s-band falls well above the 4f psendopotential T, and
well above the value of the one-electron potential at the sphere boundary
(v in table V). Moreover, the 5s mass is significantly smaller than unity and
attaing a minimum, as do (V,—V,)s* and (v — V,)s?, near the middle of
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Fig. 17. — Band positions relative to the bottom of the s-band, in dimensionless units,
and intrinsic band masses, on a reciprocal scale, in the 4d series. The fulllines represent
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TasLeE VIII. — Volume derivatives of band parameters.

K Ca Se Ti
Rb Sr Y Zr
Cs Ba Lu Hf
dn s 0.182 0.538 0.455 0.421
dlns 0.117 0.628 0.688 0.651
electrons 0.088 0.955 0.828 0.720
atom
P —0.048 0.395 0.989 0.727
—0.005 0.854 1.276 1.373
0.169 0.905 1.494 1.613
d —0.144 —0.936 —1.377 —0.988
—0.246 —1.532 ~1.854 —1.720
—0.427 —1.765 —2.206 —2.053
f 0.011 0.003 —0.067 —0.161
0.135 0.049 —0.112 —0.302
0.000 —0.097 —0.119 —0.281-
ding —0.7 —0.6 —0.5 —0.8
dlns —0.6 —0.5 —0.5 —06 -~
—0.7 —0.5 —0.6 —0.6
dw 0.38 0.52 0.66 0.79
17 (Ryd)
ns 0.35 0.47 0.61 0.73
0.24 0.46 0.64 0.76
dE, —0.27 —0.58 —1.07 —1.52
11 (Ryd)
n s —0.26 —0.62 —1.00 —1.60
—0.13 —0.48 —1.12 —1.67
dr.m.s.(E—E,) s —0.084 —0.101 —0.071 —0.053
dlns —0.081 —0.081 —0.035 —0.043
(Ryd) .
—0.060 —0.008 —0.089 —0.104
P —0.067 —0.089 —0.071 —0.081
—0.063 —0.036 —0.032 —0.055 -
—0.035 —0.005 —0.090 —0.133
d —0.072 —0.044 —0.053 —0.130 -
—0.034. —0.040 —0.040 —0.154 -
—0.007 —0.016 —0.060 —0.174"
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Vv Cr Mn Fe Co Ni Cu
Nb Mo Te Ru Rh Pd Ag
Ta W Re Os In Pt Au
- 0.392 0.285 0.233 0.253 —0.074 0.240 0.191
0.615 0.365 0.247 0.136 0.038 —0.086 0.128
0.667 0.411 0.355 0.226 0.041 0.129 0.257
0.411 —0.029 —0.404 —0.469 —1.664 —0.504 —1.061
1.066 0.405 —0.036 —0.535 —0.934 —1.176 —1.490
1.272 0.429 0.026 —0.662 —1.542 —1.402 —1.923
—0.602 —0.032 0.406 0.535 1.831 0.590 1.042
—1.297 —0.255 0.345 1.031 1.535 1.816 1.790
—1.532 —0.385 0.221 1.153 2.255 2.094 2.324
— 0,202 —0.222 —0.236 —0.321 —0.091 —0.327 —0.172
—0.381 —0.515 —0.555 —0.636 —0.634 —0.558 —0.423
—0.407 —0.455 —0.602 —0.718 —0.754 —0.821 —0.658
—1.0 —1.2 —1.4 —1.5 —1.8 —1.6 —1.8
—0.9 —1.2 —1.5 —1.8 —2.1 —2.4 —2.6
—0.8 —1.1 —14 — 1.7 —2.2 —24 —2.7
0.93 1.03 1.04 1.10 1.16 1.08 1.09
0.89 1.03 1.10 1.21 1.24 1.20 1.12
0.93 1.06 1.12 1.25 1.31 1.28 1.25
—1.70 —2.04 —1.81 —1.87 —1.45 —1.98 —1.66
—2.01 —2.50 — 2,64 —2.66 —2.52 —2.14 —1.55
—2.04 —2.62 —2.82 —2.98 —2.93 —2.77 —2.26
—0.064 —0.131 —0.166 —0.183 —0.192 —0.272 —0.382
—0.111 —0.265 —0.311 —0.368 —0.388 —0.387 —0.300
—0.160 —0.304 —0.362 —0.433 —0.439 —0.474 —0.420
- —0.080 —0.152 —0.193 —0.203 —0.266 —0.245 —0.388
- —0.099 —0.243 —0.320 —0.390 —0.426 —0.403 —0.286
~—0.138 —0.272 —0.364 —0.451 —0.496 —0.508 —0.484
. —0.162 —0.242 —0.298 —0.338 —0.354 —0.343 —0.452
. —0.215 —0.352 —0.461 —0.519 —0.544 —0.524 —0.433

—0.225 —0.358 —0.501 —0.594 —0.670 —0.677 —0.613
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the series. Since the mass (83) is essentially the ratio between the normaliza-
tion integral in the sphere and the probability at the sphere boundary, this
means that the bs-electron is excluded from the core region (orthogonalization
hole), and the above-mentioned facts may be explained as the effects of a
repulsive ion core, whose size, relative to the atomic sphere, attains a maxi-
mum in the middle of the series. For a further discussion of this point and
other trends in the 4d series we refer to a paper by PETTIFOR [58].

In fig. 18 we give the absolute band positions through the Rb series and
as functions of the atomic volume. The numerical results may be found in
tables III, V, VII and VIII. In fig. 18 and in tables III-VIII the zero of
energy is the electrostatic (Hartree) potential between the atoms in an in-
finite erystal. This value is well defined in the ASA, where the charge den-
sity is spherical. At the sphere boundary of an elemental solid where the
spheres are neutral, the electrostatic potential vanishes, and the one-electron
potential, therefore, equals the exchange correlation potential which, in the
local-density approximation, is u_(n(s)), %.e.

(188a) v = v(s) = A[n(8) exo(n(8))]/AN(S) = poe(n(8)) = phsc
—0.916 —1.
(188) v & pro(n(s)) = é3£'9ac(n(*‘>‘)) = %r (n(S;5 - 13221 :

For the approximation (188b) we have neglected correlation and used the
well-known Hartree-Fock result for the homogeneous electron gas. The elec-
tron gas parameter 7, is the radius of a sphere holding one electron and, con-
sequently, ¢7,(n(s))® = s3, where ¢ = n(s) ¥~ is the electron density at the sphere
times the sphere volume, ¥" = %ms3. This «effective free-electron number » ¢
is given in tables V and VI for the equilibrinm atomie volume and its variation
with volume is given in table VIII and is shown in fig. 19. The stippled lines
in that figure are the constant-r, curves given by ¢ = (s/r;)>. The values of
v = u,, and e at the sphere are shown in fig. 18.

The parabolic trend followed by the Fermi energy in fig. 18 results from
the combined effects of filling-up the d-band and lowering its centre of
gravity. The Fermi energy is the negative of the internal work function, and
the difference between this and the external work function, which experi-
mentally increases from about 0.23 Ryd in Y to about 0.40 Ryd in Pd, is
due to the surface dipole.

Under the entry r.m.s. (B — E,) in tables V, VI and VIII we give the
values of [m®/n,]}, where m{® is the second energy moment defined in (39).

The potential parameters indicated by open cireles in fig. 17 result from
the standard, non-self-consistent Matheiss-Slater potential construction which
involves superposition of neutral-atom densities with the s!-configuration in
the 3d and 4d series and the s2-configuration in the 5d series. For the transi-
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Fig. 19. — Electron density, n(s), at the Wigner-Seitz radius, s, times the sphere
volume ¥" = (4/3)zs%, that is, the effective free-electron number, ¢ = n(s)#". The
g-values were obtained from self-consistent calculations atthree different atomic
volumes for each metal. For the mono-, di- and tri-valent metals, at the beginning of
the 3d, 4d and 5d rows ¢ is seen to be close to the respective values 1, 2 and 3. The
stippled lines are the constant-r, contours (¢ = (s/r,)®) corresponding to the », values
1.6, 2.0, 3.0, 4.0 and 5.0, :

tion metals the band structures derived from the local density and the standard
potentials differ by less than 20 mRyd, but for the simple, alkaline-earth and
noble metals the differences are larger and here the local density potential
generally yields the better Fermi surfaces[2].

Crude estimates of the potential parameters may be obtained directly
from atomic energies and wave functions by renormalizing the latter to the
atomic sphere and by using first-order perturbation theory.

The relativistic corrections to the band structures of metals have their
origin in the regions close to the nuclei, where the velocity of the electrons
is high, and they may, therefore, be separated into mass velocity plus Darwin
shifts and the spin-orbit coupling. For a given metal the relativistic effects
decrease with increasing angular momentum and principal quantum number
and, for a given nl-shell, they increase with atomic number, approximately
as Z* Due to the normalization (13) of the partial wave to the atomic sphere,
the magnitudes of the relativistic effects are larger in the solid than in the
atom by a factor of approximately (1 — ¢,,)", where ¢, is the fraction of the
atomic nl-electron which lies outside the sphere. For transition elements this
fraction is about 0.5 for s-electrons and. less than 0.1 for d-electrons. The par-
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tial-wave normalization furthermore causes the magnitude of the relativistic
effects in the solid to increase from the bottom to the top of the band and,
for transition metal d-bands, this increase is nearly a factor of two.

Of the relativistic corrections, the shifts are the most important; the down-
wards shift of the 4s-band with respect to the 3d-band is about 15 mRyd in
the middle of the 3d series, in the 4d series the corresponding number is
75 mRyd, and in the 5d series it is 250 mRyd. As a result, the number of
non-d-electrons increases from 1.504-0.10 per atom in the 4d series (Y to Ag)
to 1.756-4-0.15 in the bd series (Lu to Au). In our self-consistent calculations
the relativistic shifts have been taken into account by performing fully rela-
tivistic calculations, but leaving out the spin-orbit coupling effects on the
band states, by deriving the potential parameters from a scalar radial
Dirac equation [63]. As shown in fig. 20, the spin-orbit coupling parameters
are typically one order of magnitude smaller than the relativistic shifts. More-

5000 Z? 6000
1 I

Bo
Cs

1
0 1000 2000 Z%? 3000

Fig. 20. — Spin-orbit coupling parameter &,(C,) for the centre of the d-band, as a func-
tion of the square of the atomic number.
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over, for crystals with inversion symmetry the spin-orbit coupling cannot
split the two spin bands and, therefore, gives rise to splittings of first order
in £ only in small regions of k-space near points of degeneracy.

Potential parameter tables for the rare-earth and actinide metals have
been produced by SKRIVER [10].

6. — Ground-state properties of elemental metals.

6°1. Cohesive properties. — Recent interest has focussed on the calculation
of the ground-state energy with the density-functional formalism using (41)
or (43) and there has been a tendency to regard the resulting band structures
as unphysical by-products. Not even in Hartree-Fock theory, where Koopman’s
theorem holds, does the sum of the band structure energies equal the total
energy, because the former counts the electron-electron interactions twice.
Nevertheless, many years of experience with empirical one-electron methods
in solid-state physics and in chemistry indicate that often the simplest way
to understand structural stability [64], elastic constants [65], phonon spec-
tra [66], chemical reactions [67], ete., is through the behaviour of the sum of
the one-electron energies plus an empirical short-range repulsion. It is now
fairly simple, from the Born-Oppenheimer and the local-density-functional
(LDF) approximations, to derive a so-called force thcorem [2, 68, 69] which
indicates that this practical experience might be firinly based. The force
theorem has been used extensively [2, 9-11, 45, 53, 60, 61, 70-76] in first-
principles calculations of the pressure [68] at zero temperature, that is the
change of the total energy with uniform compression, i.e.

(189) PV )=—dB, Jd7",

where ¥ is the volume and we have neglected the zero-point motion of the
nuclei. Calculation of the pressure-volume relation enables one to estimate
the equilibrium atomic volume, ¥, as

(190) PV ) =0,

the bulk modulus, or inverse compressibility, as

(191) B =—[d2/d1n V"],

and, in principle, the cohesive energy as

(192) B, = —f@ 4y = —f3@“//dlns :
Yo

So
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This is illustrated in fig. 21. Moreover, the force theorem has been used to
calculate the heats of formation of alloys [77, 78] and, with appropriate modifi-
cations to include energy changes to second order, to the calculation of elastic
constants [79].

P=-d.E[dV

av

E

coh

Fig. 21. — Total and partial pressure-volume curves (schematic). The bulk modulus is
the slope of the curve, the equilibrium volume is the intersection with the volume axis
and the cohesive energy is the area below the curve from the intersection to infinity.

The force theorem [2] states that the change of the total energy due to a
deformation to first order equals the change in the sum of the one-electron
energies for rigidly shifted cellular potentials plus the change of the electro-
static interaction between the rigidly shifted cellular (electronic plus nuclear)
charge densities. In order to illustrate this theorem, we consider the calculation
of the force acting on the nucleus at point R: First we perform a self-consistent
LDF calculation for the entire solid obtaining the one-electron energies E,,
the potential V(r) and the electronic (plus nuclear) charge density n(r). Then
we choose some cell surrounding the nucleus at R, but no other nuclei, and
cut the potential vz(r — R) and the charge density ngz(r — R) in that cell loose.
With the virtually displaced potential V(r) — vg(r — R) + vz(r — R — dR) we
now solve the one-electron Schrodinger equation obtaining the new one-elec-
tron energies E, + 3E;. If r lies in a gap region between the displaced cell
and the undisturbed rest, the potential is given the value V(r) + e_(n(r)) —
— p(n(r)) and, if r lies in a region of overlap, the value is V(r)— e (n(r)) +
+ u.(n(r)). When the new density n(r)+ 3n(r), obtained by solution of
Schrodinger’s equation with the displaced, non-self-consistent potential, is used
as the trial density in the energy functional for the configuration with the
virtually displaced nucleus, the change of the total energy E,, + dE,, can

be evaluated explicitly and, as a result, we find the desired expression for the
force

occ

(193) F=—dB*/dR = — 3 8E;dR + F,
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with the electrostatic force given by

(194) —F, dR=

E“‘[n(r) —na(r — R)][r — r'|* [na(r' — R— dR) — ng(r' — R)] d% a%-

Note that it is merely the rigidly shifted density, rather than n(r) - Sa(r),
which enters (194).

It is obvious that the force acting on the nucleus is independent of where
we choose to cut that nucleus loose; the choice of cell just shifts the weight
between the two terms on the right-hand side of (193). If, for instance, we
choose the cell as an infinitesimal sphere around the nucleus, the first term
vanishes and (193) reduces to the well-known Hellmann-Feyman theorem,
which states that the force equals the electrostatic force acting on the nucleus.
1f, on the other hand, we choose the cell around the nucleus so large that its
electronic charge neutralizes the nuclear charge and, furthermore, the cell is
tairly compact, then the electrostatic field from the cellular charge ny(r — R)
is weak and of short range. Consequently, the change of the sum of the one-
electron energies gives the dominant contribution to the force (193). The
notation 8F,—rather than d&,—for the change of the band structure energy
emphagizes that this change corresponds to the rigidly shifted, non-self-
consistent potential. This undoing of self-consistency is what cancels the
double counting.

The evaluation of the pressure from the force theorem is particularly simple
with the LMTO method, because only the potential parameters change; the
structure matrix is independent of the lattice constant. For the evalunation
of the «deformation potentials» 3E; we first need the perturbation of the
Hamiltonian. If we choose to work in the orthogonal representation and, for
instance, use (65)-(66), we readily find that

(195)  SH®=3C 4 (3SInA)A*SA* + A*SAHLSIn A) + A*§ 3@ SA: =
=8C+ (}3In A)[H® — C] 4 [H® — C}A 81n A) + [H® — C] A1 SQ[H® — C].

Here the only matrices which are not diagonal in Rlm are § and H®. If we
now assume that H® has been diagonalized as in (31), first-order perturbation
theory simply yields

(196)  3EY — uf SH®u, —

= z [8C, (Eﬁ-”— C))8In 4, + (Egz)_ C)2 A7 3Q,] z luﬂlm,jl2 =
!

Rm

= X 3E(P(B,))® Y Jugims]?

11 REm
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where K,(P)® was given in (103). It is now possible to include the change
of the small potential parameter p, as well as the combined-correction term,
but this is seldom necessary. Here, we shall just go to second order and
use the ASA, whereby, for an elemental solid, also the electrostatic term in
the force relation (193) vanishes. With these approximations the pressure
is given by the following equivalent expressions:

oce

(1974a) 3PV =—dB/dIns =—> 3E;[/3Ins =
)

3C, 31n A4, ~ 1 89,
znl[ + B — Oy <7 +<(H—0) g Sms],
(1970) 377 ———Enz[wl +<E V>1881;1F " LE=T) 381?1’8]

(197¢) 3PV = ——zf[b‘E, E))[3Ins|N,(E)dE = zd.@ v

V" = $ms® is the atomic volume. Like in subsect. 3’4, we have projected the
density of states onto the orthogonal orbitals or, equivalently, onto the par-
tial waves and the pressure has been decomposed in the same way. Moreover,
the energy moments are

(198) (B— Oy = (m®Pn) — (C,— By) = — (C,— BEy)
and

(199) (B — O)D, = (mP)n) — 2(mi® ny)(Cr— By) + (Cy— Bw)* =
= [r.m.s.(F — By).]? -+ (C,— By)?,

where, like in our tables, we have chosen E , to be at the centre of gravity
of the occupied part of the band. For the transition metal d-bands we prefer
using the «central » parameters ¢ and A, while for the s- and p-bands we
prefer using the «pseudopotential » parameters ¥V and I The corresponding
equation (197b), which is equivalent to (197a), was obtained from expression (85).

So far eq. (196) is valid for any first-order perturbation of the atomic-
sphere potential. Now we derive expressions for the change of the potential
parameters using the fact that, for evaluating the pressure, the potential
should be frozen and only the sphere radius should be changed. The (unnozr-
malized) radial wave function as given by the radial Schrodinger equation

(200)  —[r@(B, 1) = [B—o(r) = U+ 1)r2)rgu(E, r) = [E — v,(r)]§( B, 7)
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is, therefore, unchanged and only the radins, s, at which the boundary con-
dition D,, or equivalently P,, is installed varies (see fig. 8, eqs. (70), (95)
and (100)). This is illustrated in fig. 22. Since (@) /¢ = D(D + 1) + »D’,
with D =»§'/@, the radial Schrédinger equation is easily rewritten as a first-
order differential equation for the s-dependence of the logarithmic derivative
function, D,(Z,s), and hence, for the inverse function, the energy H,(D,, s)
corresponding to the boundary condition D, at the radius s. The result is

(201)  —3Ey(D,, 5)/01n s = [0D,(H, 5)/01n s][0D,(E, s)/0E]* —
=[(Di+ 1+ 1)Di—1) + (B —v)s*]sp,(B, s)* =

= [Di(D;+ 1) + (B — ;) s*] 59, (B, 8)2 .
The fact that

(202) Dy(B) = — [sq, (B, 5)*]*

follows from

(203) 0= <p(B)|—V2+o(r) — Blpd = (B — E)<o(B)|p> + W{p, p(B)}

by letting B, — E. In (201) v is the value of the potential at the sphere and
v, =0+ (I + 1)s~* is the corresponding value of the potential including the
centrifugal term which enters the effective one-dimensional Schrodinger equa-
tion (200). When calculating the pressure, we must substitute v (188) by
eo(n(s)) =¢,, due to the exchange correlation correction mentioned above,
or add this exchange correlation correction as a separate term which is given
by (204) below. Expression (201) for the « frozen » deformation potential isexact,
to all orders in B — Fy, and it may be inserted directly for — 3E,(P (Pu(BE))/81n s

n (196) or (197¢), although the expansions in powers of E — Cy, E—T/,
E——E,,, to which we shall return in a moment, are more convenient.

From (201) we realize that the various characteristic energies V y, B, C
and 4, which correspond to the respective logarithmic derivative values D — l,
0, —I—1 and — oo, have quite different deformation potentials: The con-
tribution to the pressure from a pure gtate with energy, B, at the bottom of
the band is positive (repulsive) if the electron is allowed classically to pass
out of the atomic sphere (B, > v,), and it is negative (attractive) if the electron
escapes the sphere only by tunnelling (B, < v,). The magnitude of the pres-
sure is proportional to ¢(H, s)%, i.e. to the probability of being at the sphere.
The contribution to the pressure from a pure state with energy, A, at the top
of a band is always repulsive. These different behaviours are illustrated in
fig. 22. At the bonding energy the radial wave function attains a maximum
between the atoms, if the region is classically allowed, and a minimum, if it
is forbidden (see eq. (200)). For a compression from s to s — ds this energy
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Fig. 22. -~ Radial wave functions, ¢;, at the bottom (B;) and the top (4,) of the
band. The dotted lines are for cases where B; and A4, are greater than the effective
potential, v;, at the sphere, and the full lines are for cases where B, and A4, are smaller
than »;: The sign of the partial pressure is indicated to the right.

now corresponds to a positive slope of the wave function for a «free » state
and to a negative slope for a tunnelling state. Since for a given atomic volume
the slope (or rather ¢'/p) is a decreasing function of energy (202), it is neces-
sary, in order to restore the bonding condition, ¢’'= 0, to raise the energy
of the «free» state and to lower the energy of the tunnelling state. The pres-
sure thus raises the energy of a «free» electron and lowers the energy of a
tunnelling electron at the bottom of the band. That the pressure always raises -
the energy of an electron at the top of the band can be realized from fig. 22,
too. 4

An elemental metal is, therefore, kept together by the tunnelling electrons
in the lower (bonding) parts of (narrow) d- or f-bands and the exchange plus
correlation which contributes the attraction

Ey

(2040) 3P,V = — 3 [(ee— ) 0B, )2V (B) AT =

14

= —3n(8) ¥ [e,(n(s)) — po(n(8))] = — Bale,,— p,.) ~
(204b) 3P YV = qe, = — 0.916 ¢[r(s) = — 0.916 ¢¥/s .

For approximation (204b) we have neglected correlation like in (188b). In
free-electron-like metals the exchange correlation pressure (204a) is the only
attractive one, unless a partial square-well pseudopotential, V;, falls below v(s).

This description of binding seems to differ from the « chemical » one, where,
essentially, the states in the lower half of any band are said to be bonding,
while those in the upper half are antibonding. The connection to the chemical
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description is given by (197a), where the pressure is separated into a move-
ment of the centre of the band, the band broadening and the change of the
band shape which may often be neglected. Now, in the chemical descrip-
tion the movement of the band centre is not included but, instead, an em-
pirical short-range repulsion is added to the contribution from the sum of the
one-electron energies calculated with fiwed C’s.

In order to obtain explicit expressions for the change of C or V, of the
band broadening and the shape, we may, for instance, expand the energy
dependence of (201) to second order in F — F, using the third-order ex-
pansion (104) for E(P(D)) with P(D) given by (95), perform the integral
over energy and then express the ¥ — K, moments in terms of the F — C or
E — V moments ag in (198)-(199). This yields fairly complicated expressions
for the volume dependence of the position, width and shape parameters O,
A and @, or V, I' and @. The numerical results given in the present lecture
were in fact obtained with a third-order expansion of (201) [10]. An alter-
native and equivalent procedure is, from the normalized and orthogonal
phi—phi-dot pair for the sphere radius s, to construet & normalized and ortho-
gonal pair for radius s — 8s and then use the latter in definitions (64), (67),
(68), (79) and (81) of the potential parameters. We now quote the results
correct to first order in £ — F,:

For the change of the band positions (201) yields

30 C—w SV V—u
(205) — 575 =2 ; and  — g3 = (21+3) ——.

If the exchange correlation pressure (204) is not added separately, v should
be substituted by v 4- e — u,, (= &, for an elemental solid). For free elec-
trons, where V = and v = u = 1, these equations reduce to 8V = 0 ané
3(C — v)s2= 0, as they should. Usually C lies above v, so that the centre
of the band moves up under compression. This movement is inversely propor-
tional with the band mass.

For the volume dependence of the width and mass parameters the first-
order results are

dInA  Slnus* 2 2(C—w)s?
(2084) = STas = Sins _(2Z+1)+M_D{¢}+z+1
and

dIn/l”  dlnzs® 2043 2(V—w)s
(2063) " Slns  dlns =— @+ D+ Di{g}—1 °

For free electrons v = 1 and ¥ =, so that (206b) yields the well-known result
that the band width scales as s2, i.e. like a kinetic energy with a volume-inde-
pendent mass, v. Moreover, for free electrons with E, = C, it may be proved
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that 2(C — v)s*[D{¢g} +1+1]"*=21+41 (see (72) and (76)) so that S1ln A/
[81lns = — 2, which is the same result as obtained for 31n I'/dIns. For tran-
sition metal d-bands @ ~ 0, so that D{g} 4 I -+ 1 ~ 5. Furthermore, fig. 17
shows that (C — v)s® decreases from about 7 to 2 and that u increases from
about 3 to 12 as we proceed through the 4d series. The result is, therefore,
that 81n 4/31n s decreases from about — 3 to about — 5.

The band shape depends on volume like

. N
S S

39  1D{p}—1 —4/u [ 1 _ 12p ](0——@)32
G019 s T D L1+t D@ R (e s
when F, ~ C and like
5 T D{g} +1+1—2(21+ 3)/z
(2076) Slns ~ (21 3)u Di{g}—1
+[ 1 _6(2Z+3)p] (V —v) s
(D=1 (e #

when B, ~V. When we are not considering an elemental solid, both expres-
sions should contain the prefactor (s/w)2*+!. For free electrons @ is ﬁa fixed
number, given by (75) and (76) and thus independent of volume. This is, of
course, consistent with (207) as seen by using the free-electron values (75),
(76) and (78). The second-moment term of the pressure (197) thus vanishes for
free-electron bands. For transition metal d-bands @ ~ 0, so that D{¢} ~ 2,
and p~t is of the order of 50(us?)~'. This means that the term proportional
to p is rather small and consequently 3Q/31Ins ~[— 10 4 (C — v)s*]/25u, which
in (197a) gives rise to a small repulsive pressure. * I, {(cruc 7 pied s

The s, p, d and f partial pressures for the 4d and 5d series are shown
in fig. 23 as functions of (s — s,)/s,, Where s, is the experimentally observed
equilibrium radius. In this picture the exchange correlation term (204) has
been included in each partial pressure, moreover, the small f-pressure arises
because we explicitly included f-orbitals in the calculations rather than folding
them down into the tails of the s-, p- and d-orbitals with the procedure de-
scribed in subsect. 412. As mentioned above, we could also have separated
the repulsion from the centre-of-band movement from the band-broadening
contribution, we could have shown the energy distribution of the partial pres-
sures and we could even have projected onto the nonorthogonal short-range
orbitals instead of onto the orthogonal ones and hence have obtained a non-
diagonal description more similar to the descriptions of bonding used by the
chemists in terms of overlap populations. The radius at which the total
pressure, which is independent of these choices of representation, vanishes is
denoted by th and is seen to be generally a few per cent too small. Using the
band parameters shown in fig. 17-19, or in tables I1I, IV for the experimental
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Fig. 23. — Partial pressures calculated for the Rb and Cs series as functions of (s — s,)/s,,
where s, is the experimentally observed equilibrium radius. th indicates the calculated
equilibrium Wigner-Seitz radius.

radius, together with (197), (205) and (206), we shall now discuss the balance
between the partial contributions to the pressure shown in fig, 23.

For a homogeneous electron gas in a homogeneous positive background
(whose kinetic energy is neglected), 4.c. for nonrigid jellium, V=pu_ <e¢_
and 7 = 1 for all values of { and s. The SV term in (197b), therefore, provides

10 - Rendiconti S.I.F. - LXXXIX
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an attractive, i.e. negative, pressure which is the exchange correlation correc-
tion (204) to the second, band-broadening term

(208) 32, 7V =—m(E—V)(—2)=—qtki(—2)=—q(2.21177)(—2).

The latter is the usual kinetic-energy term. The equilibrium for the jellium
oceurs at 7, = 8¢~ = 2x2.21/0.916 = 4.83 a.u., if correlation is neglected, and
at r,~ 4.1, when it is included. Crudely speaking, this is the situation found
in the simple metals (see, for instance, fig. 19). As we proceed into a transi-
tion series, where the number of s- and p-electrons is about 1.6, the atomic
volumes decrease (see fig. 24) due to increased d-electron binding, as will be
explained below. The relative core size thereby increases with the result that
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Fig. 24. — Equilibrium Wigner-Seitz radii for the 3d, 4d and 5d series. The line and
full dots are the results of non-spin-polarized ecalculations, while the open triangles
for Fe, Co and Ni are for spin-polarized caleculations. The open dots are the experi-
mental values.

the s and p pseudopotentials, V, increase and reach maxima well above ¢ ,
near the middle of the series, and that 7, decreases to a minimum of about
0.7. The s and p pressures contributed by the 3V term, therefore, change
sign and reach positive maxima near the middle of the series. Also the posi-
tive, kinetic s and p contributions to 327", arising from the band-broadening
term, increase with decreasing s. The s—2 behaviour (208) found for free elec-
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trons is, however, somewhat modified, due to the presence of the hybridiza-
tion gap in the s-band created by the d-bands.

Turning now to the d-electrons, we realize that (, lies above &, and,
therefore, increases with pressure. This means that the SC term in (197a) is
repulsive, as are the s and p terms, and it reaches a maximum near the middle
of the series due to the combined behaviour of Ca— €xcy pa and n,. The attrac-
tion is provided by the band-broadening term and, for a rectangular density
of d-states, (B — ), ~ — 254, (10 — 7q)[20 and SIn 4,8 Ins~ —5, as
obtained from (206a). Therefore, the d-band broadening gives rise to the
well-known parabolic behaviour [80]

(209) 3 bona ¥ A (2845)1a(10 — ny) 4,
which is about 30 per cent reduced by the SC term.

In order to obtain the bulk modulus or the cohesive energy from the pres-
sure relation (egs. (190)-(193) and fig. 21), the band parameters must be
determined self-consistently as functions of atomic volume. Although the
change of radius at which the boundary condition is installed as well as the
electron-electron interaction cause the band energies to rise rapidly with com-
pression, we have seen that it is only the former which enters the pressure
relation. For the d-electrons this change is at least one order of magnitude
smaller than the total self-consistent change given in table VII, and we
have argued that its magnitude is only about one-third of the attractive
contribution from the broadening of the d-band. For d-electrons the effect
of electron-electron interaction is nearly the same throughout the band and
this means that

(210) dInA;/dIns ~81n 4,/81Ins .

In Pd, for instance, the values in (210) are, respectively, — 5.0 and — 4.5.
The d contribution to the cohesive energy is, therefore, roughly minus the
sum of the one-electron energies measured relative to C;. The sum of the s
and p pressures becomes negative for s> 4, as we have seen, and their integral
from s, to infinity turns out to be rather small. The major contribution to
the cohesive energy in the transition metals thus arises from the broadening
of the d-band as argued originally by WieNER and Serrz [81] and used exten-
sively by FRIEDEL [80] and co-workers. The bulk modulus is, however,
except at the end of a series, contributed mainly by the highly compressed
s- and p-electrons, as seen in fig. 23. This short-range repulsion is not included
in the simple extended Hiickel [82], chemical pseudopotential [83] and empi-
rical tight-binding [80] schemes.

Our LMTO-ASA results for the equilibrium Wigner-Seitz radii and bulk
moduli are summarized in fig. 24 and 25. In fig. 24 the line and the full
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Fig. 25. — Bulk moduli for the 3d, 4d and b5d series. The lines and the full dots
are the theoretical ASA values evaluated at the experimental equilibrium volumes.
The full dots for Fe, Co and Ni correspond to non-spin-polarized calculations. The
values indicated by full dots for the 4d series include the most simple electrostatic
correction to the ASA. The crosses give the experimental bulk moduli.

dots are the results of our non-spin-polarized calculations, the open frian-
gles for Fe, Co and Ni are from our ferromagnetic spin-polarized calculations,
which will be discussed in the following subsection, and the open dots are the
experimental values. Our radii are consistently a few per cent smaller than
the experimental ones and the discrepancy is somewhat larger than found in
the KKR-MT calculations for the 3d and 4d series by MoRruzzl et al. [54).
This suggests that part of the discrepancy is due to the assumption made
in the ASA for an elemental metal that each nucleus is perfectly screened
by the electronic charge cloud in the surrounding cell. In fig. 25 the crosses
give the experimental bulk moduli and the line as well as the full dots
give our theoretical bulk moduli in the ASA but evaluated at the experimental
equilibrium volumes. The bulk modulus varies substantially with atomic
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volume, and, had we evaluated the bulk moduli at the (too small) theoretical
—rather than at the experimental—equilibrium volumes, our bulk moduli
would have been up to 20 per cent larger than the experimental ones. For
the 3d series the line includes for Fe, Co and Ni (but not for Mn) the effects
of spin polarization and the full dots give the bulk moduli caleulated
without spin polarization. For the 4d series the full dots include the most
simple electrostatic correction to the ASA [73].

Structural-energy differences have the order of magnitude mRyd per atom,
and the task of evaluating them as the difference between two self-consistently
calculated total energies requires outmost care and provides little insight.
If the rearrangement of the atoms needed to go from one crystal structure
to another were an infinitesimal one, one could, however, use the force rela-
tion (193) and calculate the structural-energy difference as the difference be-
tween the sums of the one-electron energies, calculated for the same potential
in the two different crystal structures. In the ASA, one would furthermore
neglect the electrostatic term (194). This simple, approximate method hag
been successfully applied in a number of cases, as we shall give examples of
below, and this recently led MOMAEAN ¢f al. [84] to compare numerically the
correct difference-of-total-energies method with the first-order force theorem
method. (In both cases the combined correction to the ASA (subsect. 4°8)
was used for the one-electron energies and (43) was employed for the total-
energy calculations.) MOMAHAN efal. considered the f.c.c., h.c.p. and b.c.c.
phases of Na, Mg, Al and Si for atomic volumes ranging from the normal ones
and down to tenfold compression, and it was generally found that the strue-
tural-energy differences caleculated with the two methods agreed within 2
per cent, or, for the smaller differences, to within 0.05 mRyd per atom. With
one exception, the calculations agreed with the known experimental facts, a
number of high-pressure phase transitions were predicted, and the results
could be qualitatively understood on the basis of the volume dependence of
the band structure, in particular the down movement of the 3d-band and the
position of the Fermi level. (The one exception was that Na was predicted
to be h.c.p. rather than b.c.c. at normal volume, even after the zero-point
motion has been taken into account. This discrepancy, however, now seems to be
due to insufficiently converged Ewald summations in the evaluation of the
bare structure constants.)

SKRIVER [85] used the force theorem approximation for a similar study of
the structural stability, as a function of pressure, for the divalent metals Be,
Mg, Ca, Sr, Ba, Eu and Yb. At normal volume he obtained the b.c.c.-f.c.c.
and h.c.p.-f.c.c. structural-energy differences shown in fig. 26 and, as seen,
the stable structures are correctly predicted. Here again, the structural trends
could be correlated with the degree of hybridization with the nearly empty
d-band. A measure of this hybridization is the number of d-electrons, n,
(table V),
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Fig. 26. — Structural-energy differences b.c.c.-f.c.c. and h.c.p.-f.c.c. for divalent metals
as calculated from the force theorem by SEKRIVER [85]. The structures observed at
normal pressure (&~ 0) are indicated at the abscissa.

For the nonmagnetic transition metals the structural sequence at normal
atomic volume is h.e.p. (Se, Y, Lu), h.c.p. (Ti, Zr, Hf), b.c.c. (V, Nb, Ta),
b.c.c. (Cr, Mo, W), h.c.p. (Te, Re), h.c.p. (Ru, Os), f.c.c. (Rh, Ir) and f.c.c.
{Ni, Pd, Pt). If we use the force theorem approximation and, furthermore,
consider the unhybridized bare canonical d-bands only and neglect the small
potential parameters @, and p., the structural-energy difference is simply
the difference between the first canonical moments

S{ng)

(211) f SN.(8)ds

in units of A, = (uas?)~'. Here N,(S) are the densities of states shown in
fig. 27 of the bare canonical d-bands illustrated in fig. 14 and 15. The result
of (211) is shown in fig. 28 as a function of the band filling, n,, and it is
similar to the one obtained earlier by PETTIFOR [64]). The stability of the
b.c.c. structure in the middle of the series is clearly associated with the pro-
nounced depletion of states seen in fig. 27 near the centre of the b.c.c. d-band.
Tigure 28b) accounts gualitatively for the crystal structures of the nonmagnetic
transition metals, apart from the occurrence of the f.c.c. structure at the end
of the series. A most recent calculation [86], still based on the force theorem
approximation but including the hydridization and the combined correction
term, yields the correct crystal structures for all transitional metals.
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Fig. 27. — Densities of states per spin for the bare canonical d-bands.

The elastic constants of the transition and noble metals have been cal-
culated successfully [79] from the force theorem with careful consideration of
the electrostatic term and with energy bands calculated in the usual ASA-
Plus-correction-term way. Moreover, it should be possible in the near future
t0 go beyond the so-called rigid MT, or rigid ASA, approximation used, for
instance, by GLOTZEL et al. [87, 88] to study the electlon phonon interaction
in the transition metals.

The crystal structure sequence h.c.p. .y Sm., d.h.c.p., f.c.c. observed both
for increasing pressure and for decreasing atomlc number from right to left
across the trivalent rare-earth series was explained qualitatively by DuTHIE
and PETTIFOR [89] using bare canonical d-bands. The sequence arises when
the number of d-electrons is increased from about 1.5 in Lu to about 2.5
in La as a result of the increasing relative size of the core which causes the
sp-band to rise and thereby pour some of its electrons into the d-band.
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Fig. 28. — First moment of the bare canonical d density of states for the f.c.c., b.c.c.
and h.c.p. structures (a)) and their structural differences (b)), as a function of the d
occupancy.

6°2. Magnetic properties. — The density-functional formalism has been gen-
eralized to a spin density scheme [1, 90] in which, instead of the density, n(r),
the elements, n(rg, ro'), of the density matrix are the independent variables and
in which the external potential has the form v, (ro, r¢’). This is the generaliza-
tion which allows inclusion of the spin-orbit coupling and a magnetic field
in the external potential, and hence the:calculation of spin susceptibilities.
In the local-spin-density (LSD) approximation, the exchange correlation energy,
E_{n(ro,ro')}, is expressed in terms of the exchange correlation energy,
&..(n4, n{), per electron for a homogeneouns electron gas with density n = nh+ny
and spin density m = n} —n{, as created by an external, homogeneous mag-
netic . field. The corresponding exchange correlation potential is diagonal in
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the spin variable and hence, to first order in m,
(212) ch(ri) = (n) £ F0(n)u (n)m/n

where n=n(r), m =m(r), u(n)=—750.916/r,, and the effect of correlation
is to reduce the function d(n) from 1, in the high-density limit, to about 0.55
for », = 4.

If we now neglect the spin-orbit coupling and consider a para- or ferro-
magnet in the presence of a uniform magnetic field, #, the band structure
problem (1) is decoupled into separate equations for each direction of spin
and the external plus exchange correlation potentials are given by F u,#
plus (212), where u, is the Bohr magneton. In all other cases, say for an anti-
ferromagnet, where the spin density m(r) varies periodically with zero average
value, the Bloch functions have mixed spin-up and spin-down character. By
solving the spin-polarized band structure problem self-consistently, one may
calculate zero-temperature spin magnetizations, m, spin susceptibilities, y = u-
-dm/ds#, and magnetic contributions to the cohesive properties.

For small relative magnetizations, ¢.e. when m(r)/n(r)< 1 at all points
in space, the LSD theory may be approximated by a Stoner formalism. If,
for instance, we treat the spin-dependent parts of the potential by first-order
perturbation theory [70, 91], we find that the exchange splitting in a ferro-
magnet, or in a paramagnet subject to a uniform magnetic field, is given by

(213) AE=Ej—E)=

20(n(r)) uo(n(r)) m(r)
3n(r)ym

= 2lup H—m <w5-“i(r)

wj-’(r)> =2up 3 + mI .

Here the Stoner parameter I and hence AF are only strictly independent of k
on the constant-energy surface, E% = F, if we assume that n(r) and m(r) are
spherically symmetric in each atomic sphere and that only one partial wave
contributes to the one-centre expansion (32) of the wave function. The values
of I obtained by averaging over the (non-spin-polarized) Fermi surtace [92, 93]
are given in fig. 29. The trend shown for I may be explained from (213) by
the fact that I, for a given density, n(r), is larger for free-electron-like s-
and p-waves than for more localized d-waves, because the former include a
large contribution from the factor n~*(») in the outer region of the cell. The
minimum found in the middle of the series is caused by the mixing of the
s-, p- and d-waves and the variation of the density. This trend was pointed
out by JANAK [93], who calculated the I's for all metals nup to and including In.
His results for the 3d and 4d series are in close agreement with ours.
The static spin susceptibility is given by the well-known expression

(214) 2 =2uiN(—IN)-,
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Fig. 29. — The LSD Stoner parameter for the 3d, 4d and 5d series calculated [2] with
the LMTO-ASA method, with the procedure of Janak [93] and with the exchange
correlation potential of Barth and Hedin [90].

where N is the density of states per spin at the Fermi level. Among the non-
magnetic metals it is only in Pd, where the Fermi level falls at the peak at
the top of the f.c.c. d density of states (fig. 27), that NI is so large that the
spin susceptibility dominates the orbital and diamagnetic contributions. The
measured susceptibility of 7-10~¢e.m.u./mol is in reasonable agreement with
the theoretical spin susceptibility of 4:10~% e.m.u./mol, considering that 7N =
= 0.815 and that an uncertainty in C,— V7, of 10 mRyd will change the
Fermi energy by about 1 mRyd, and hence the density of states by about
10 per cent. The correlation effects included in the LSD approximation are
crucial for a proper description of magnetic effects; with exchange only (6=1
in (212)) Pd would be a strong ferromagnet.

The values of I become large at the second half of the 3d series and this,
together with the presence of the narrow d-bands, causes the spontaneous
antiferromagnetism of Cr [94] and Mn [95] and the ferromagnetism of Fe, Co
and Ni. Results of our self-consistent ferromagnetic [90] calculations for
b.c.c. Fe, h.c.p. Co and f.c.c. Ni may be found in tables IV and VI. Like
previous authors [70, 96,97] we find extremely good agreement between the
calculated spin moments of, respectively, 2.18, 1.60 and 0.60 u, per atom and
the experimental saturation moments corrected for the deviation of the g-factor
from two. For Ni the value of the exchange splitting is found from table IV
to be €, — O, = 44 mRyd at the centre of the d-band. At the Fermi level
the I value of 72 mRyd obtained from fig. 29 and the moment of 0.60 u, per
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atom yields the nearly identical value mI = 43 mRyd. These values of the
exchange splitting are nearly twice as large as what has been measured in
angular-resolved photoemission experiments [98] and the solution of this dis-
crepancy, plus the related one found for the elemental semiconductors where
the gaps obtained with LD theory are smaller than the experimental ones,
is an urgent problem which has been and is being pursued along different
paths [1, 99-102]. In this connection it might be mentioned that for the tran-
sition metals the fine structure (on the scale of 0.1 Ryd) found in the X-ray
absorption spectra, from the Fermi level and 5 Ryd upwards (see fig. 3), is
generally in good agreement with LD calculations [19, 103].

If we use the Stoner equation (213) with a k-independent exchange splitting,
the self-consistency condition for a ferromagnet is that the integral of the
paramagnetic-state density (per spin) over the energy range AF equals the
magnetization m. This is illustrated for b.c.c. Fe (in the absence of an external
magnetic field) in fig. 30. In terms of a function N(n, m), which is the density
of states averaged about the Fermi level corresponding to an occupancy of
n/2 spins, over a range corresponding to m spins, self-consistency requires
that m/AE = N(n, m) and, when combined with (213), this yields the Stoner
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Fig. 30. — Stoner criterium for ferromagnetism illustrated for b.c.c. iron.
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condition

(215) (I 4 2puy o |m) N(n, m) =1

which determines the magnetization m, and leads to (214) when there is no
spontaneous magnetization [104].

Trom fig. 24 and 25 we realize that the magnetic metals have relatively
large atomic volumes and abnormal bulk moduli and that the spin-polarized
caleulations for Fe, Co and Ni only account for a fraction of these anomalies.
In a band description this increase of atomic volume arises mainly because,
with a spin polarization, m, the attractive d-bond pressure (209) is reduced
by the amount

(216) 3[‘0/-31 bond(m) - ‘gzdbond(o)]'V =
—  (25A0)[k(n - m)(10 — 1 — m) + H(n—m)(10 —n + m) — n(10 — n)]/4 =

—_ 25Adm2/4 .

In other words, the attractive d-bond pressure (209) without spin polarization
follows the curve shown in fig. 28a) as a function of the d-band occupancy n.
The pressure with spin polarization is the average of the values obtained for
the two subband occupations, n + m and n — m, and it is obvious that this
average is smaller than the value at » by an amount proportional to m?--
+ o(m?). In case of a half-full band (n = 5) and full spin polarization (m = 5)
the entire d-bond pressure will be lost becanse the two subbands are, respec-
tively, full and empty.

In subsect. 6'3 we mentioned—and gave the reason for—the trend by
which a d-band narrows with increasing occupancy. If the band becomes
sufficiently narrow, the Coulomb repulsion between the electrons in the narrow
band will cause them to avoid each other by localizing them on the individual
atoms. In this way the contribution of the narrow-band electrons to the chemical
binding will be lost. In fig. 31 we show the experimental (dots) lattice constants
for the series of 3d metals (shown previously in fig. 24), the 3d monoxides and
the Bf actinide metals. The large lattice constants in the second half of these
three series is a signature of the localization of, respectively, the 3d- and
the b5f-electrons.

In the case of a half-full band the LSD band picture allowing for ferro-
magnetic spin polarization has the possibility of mimiking this loss of cohesion
in the way described in connection with egs. (215) and (216) and fig. 30.
Whether this description will yield the correct cohesive (and magnetic) prop-
erties or not depends on the size of I and the width and shape of the band.
If the band is being increasingly occupied (or emptied) beyond half-filling, as
is the case for Fe, Co and Ni, the maximum possible loss of attractive pressure
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Fig. 31. — Experimental and theoretical lattice constants for the series of 3d me-
tals [2], the 3d monoxides [74] and the 5f actinide metals [61]. For the monoxides
having the NaCl structure, a is the lattice constant, while for the elemental metals,
having various closely packed crystal structures, a is the lattice constant of the f.c.c.

structure with the proper atomic volume. o, e experiment; theory, nonferro-
or antiferromagnetic; --- theory, ferromagnetic; — - — theory, nonmagnetic.

diminishes rapidly for a band ferromagnet because, according to (216) and
fig. 30, it is proportional to the number of holes (m__ in fig. 30) squared.
To our knowledge there has been no real LSD calculation of the lattice con-
stant of Mn due to its complicated crystal structure and antiferromagnetic
spin alignment, but, as seen from the full curve in fig. 31 for Fe, Co and Ni,
the LSD description underestimates the loss of cohesion due to the Coulomb
correlation. This would be remedied if both I and the d-band width were
reduced towards the end of the 3d series.

Antiferromagnetic (AF) spin polarization allows for a better band descrip-
tion of this interatomic correlation effect because in an antiferromagnet
an up-spin electron has difficulty in hopping onto a neighbouring site because
the majority spin direction at that site is « down », such that the potential at
that site is shifted upwards by the amount mI,,. The subband widths in an
antiferromagnet are, therefore, smaller than in a ferromagnet and the sub-
bands repel each other. A smaller « exchange » field is, therefore, needed to
separate them. The associated loss of cohesion is somewhat reduced by the
repulsion between the subbands, which takes place in an ‘antiferromagnet
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but not in a ferromagnet, because this repulsion lowers the energy of the
majority band and thereby increases the cohesion.

Of the 3d monoxides shown in fig. 31 CaO is an ordinary ionie insulator,
TiO and VO are paramagnetic metals, MnO has a half-full d-band and is an
AF insulator, and so are FeO, CoO and NiO. LSD calculations [74, 105, 106]
allowing for AF spin polarization predict this transition of ground state oc-
curring in the second half of the series and, as seen from the solid line
in fig. 31, the associated upwards jump of the lattice constant is reproduced
quite well. Except in MnO the gap at the Fermi level for the AR insulators
is, however, either nonexistent or far too small [47, 74,105, 106].

In the series of actinides the localization of the bf-electrons occcurs at ame-
ricium which has a nearly half-full ‘5f-shell. Since the contraction of the
5f-shell through the first part of the actinide series is much more pronounced
than the contraction of the 3d-shell through the transition or monoxide series,
and since the 5f-band widths depend more sensitively on the lattice constant
than do the 3d-band widths, LSD calculations [61], allowing only for ferro-
magnetic spin polarization, neglecting the spin-orbit coupling and using the
f.c.c. structure, produce the trends of the lattice constants and bulk moduli
(fig. 32) well. Even the theoretical pressure-volume curve of Am, given in
fig. 33, and the prediction of a first-order phase transition where the bf-elec-
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Fig. 32. — Bulk moduli for the first half of the actinide series. The calculations were
performed for the f.c.c. structure at the experimental lattice constant, neglecting spin-
orbit coupling and allowing only for ferromagnetic spin polarization [61]: e present
calculation, experimental values (actinides), —— — experimental values (rare
earths), (e) estimated wvalues. '
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trons delocalize at about 100 kbar has essentially been confirmed by subse-
quent measurements.

The quite successful treatment by LSD theory of narrow-band materials
with a half-full band is perhaps most clearly demonstrated in the total-
energy calculation (fig. 34) by K=ELLY efal. [75] for hydrogen. This caleula-
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Fig. 34. — Total energy of b.c.c. hydrogen as a function of the Wigner-8eitz radius, 7,,
for the nonmagnetic (N), ferromagnetic (F), antiferromagnetic (AF) and strongly
ferromagnetic (SF') phases [75].

tion was performed for the Wigner-Seitz radius varying from 1.5 to 5 a.u.
and in the nonmagnetic (N), ferromagnetic (F) and antiferromagnetic (AT)
phases, as well as in the magnetic-field stabilized, strongly ferromagnetic
(SF) phase. In the AF phase the metal-insulator transition takes place for
$ ~2.7a.m. For $>3 the energy difference between the F and AF phases
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agrees within 20 per cent with the nearly exact values derived from the singlet-
triplet splitting in the H,-molecule and the pair approximation.

The question of whether a pressure-induced high-spin, low-spin transition
in a ferromagnet is gradual or of first order and associated with a volume
collapse depends in band theory on the shape of the density of states[70].
Let us consider the case of b.c.c. (x) and f.c.c. (y) iron. From fig. 30 and with
the assumption of a canonical d-band plus the fact that the Stoner I is largely
independent of the atomic volume [104],it is clear that an increase of the atomic
volume will reduce the density-of-states curve and, hence, reduce the spon-
taneous moment, m,. It is now practical to rescale fig. 30 such that the densi-
ties of states and 1/I become multiplied by the band width parameter A.
Scaled in this way AN(F)and AN (m) are independent of atomic volume and
AT increases with pressure. The self-consistently calculated moment-volume
curve for b.c.c. Fe is shown in the upper part of the left-hand side of fig. 35,
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Fig. 35. — The magnetic moment (m) and the pressuie calculated with (P) and without
(0) spin polarization for a) b.c.c. and b) f.c.c. iron as a function of the atomic
volume [70].

and the moment is seen to be quite slowly varying because this curve reflects
the steep slope of N(m) in fig. 30. The magnetic pressure, proportional to m?
(216), is, therefore, also slowly varying. This is shown at the bottom of the
left-hand side of fig. 35 as the difference between the pressure calculated
with (P) and without (0) spin polarization. If, however, instead of the b.c.c.
dengity of states, which is strongly peaked at the (nonpolarized) Fermi level
of Fe, we use the f.c.c. density of states, which from fig. 27 is seen to be rather
flat near the Fermi level, the corresponding N(m) curve in fig. 30 will be rather
low and flat in the m range from zero and nearly up to the band edge, m_,_,

which equals the number of holes in the (nonpolarized) d-band. As a conse-
quence, the moment will depend strongly on volume and may even jump,
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and so will the magnetic pressure. This is shown in the right-hand side of
fig. 35 and it is seen that f.c.c. Fe according to the self-consistent calcula-
tion [70] has two stable states: a low-volume, nonmagnetic state and a high-
volume, high-moment state.

Now, f.c.c. Fe is unstable with respect to b.c.c. Fe at zero pressure, but
GRADMANN ¢t al. [107] have been able to measure the magnetic moment of
& few monolayers of f.c.c. Fe grown epitaxially on substrates of noble-metal
alloys of varying lattice constant. The measured moments are the points in
fig. 36 and, apart from those for the thickest layer which presumably does
not follow the lattice constant of the substrate, they are in good agreement
with the theoretically predicted [70] rapid variation in f.c.c. bulk Fe.

360 3.70 3.80

Fig. 36. — Magnetic moment of f.c.c. iron as a function of the lattice constant. The full
curve is the theoretical value [70]. The measured values (o, o) [107] are for 2 layers
and a are for 2.9 layers of Fe on CuAu substrates. Experimentally the lattice constant
was varied by varying the Au content in the substrate and agsuming equal lattice
constants of the Fe film and the substrate. The Fe lattice constant might be smaller
than the CuAu lattice constant for the 2.9 layer film due to island formation.

The crystal structures of the magnetic 3d metals are generally different
from those of their nonmagnetic 44 and 5d counterparts. Fe, for instance,
is b.c.c., while Ru and Os are h.c.p. By reducing slightly the magnetic moment
in b.c.c. Fe by the application of about 100 kbar pressure, it is possible to
induce a phase transition to the h.c.p. structure, at which point the moment
vanishes. The fact that a transition metal with spin-up and spin-down d-band
occupancies of, respectively, 6.5 4 2.2 and 6.5 — 2.2 is b.c.c. follows imine-
diately from fig. 28 and so does the fact that the h.c.p. structure becomes
stable when the moment is just slightly reduced. The vanishing of the moment,
once the h.c.p. phase has formed, follows from the fact that the Fermi level
of Fe falls in a broad valley of the h.c.p. d density of states (see fig. 27 ) such
that the application of pressure in the h.c.p. phase will abruptly switch off the
magnetic moment.

11 - Rendiconti S.I.F. - LXXXIX
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7. — Electronic-structure calculations for metallic compounds.

Due to their high computational speed and reasonable accuracy the LMTO-
ASA and ASW methods have been used in numerous studies of the electronic
structure, the chemical binding, the electron-phonon coupling and the mag-
netic moments in compounds of varying complexity (with up to 30 atoms
per primitive cell). In this section we shall briefly mention a few typical of
these applications.

JAN and co-workers have during the last eight years performed dHvVA
measurements of the Fermi surfaces and, parallel herewith, performed LMTO
calculations of the electronic structures for a large number of intermetallic
compounds. Most lately LaSn, was studied [108].

Fig. 37. — Directed dt-orbital for a NbF;, cluster (left-hand side). The back lobes of
such orbitals enable the cluster to condense with other clusters and form, for instance,
a string of corner-sharing clusters (right-hand side) [47, 51].

There exists a huge variety of ordered compounds where the building blocks
are transition metal octahedra, placed in a cage of pnictides, chalcogens or
halogens, rather than of individual atoms. Depending on the constituent ele-
ments, the cluster geometry, the way in which neighbouring clusters are joined
together and the physical properties vary immensely. The string of corner-
sharing Ti octahedra shown in the right-hand side of fig. 37 is the backbone of
the ordered vacancy compound Ti;O; occurring in the TiO system. Electronic-
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structure caleulations [47, 51] have shown that the structural stability of this
compound, as well as of the ordered vacancy compound Nb;O;, where the
strings extend in all three directions, is due to the formation of multicentre
metal-metal bonds based on the directed d-orbital shown in the left-hand side
of the figure. The ternary Chevrel phases with composition MMo,X, form
another family (with more than one-hundred members) of transition metal
cluster compounds. PbMogS, is a superconductor with the presently highest
known critical field of 60 T. The electronic structure of a large number of
Chevrel phases, and of related compounds showing one-dimensional cluster
condensation like in fig. 37, have been calculated [9, 76,109] with the aim
of throwing light on the chemical binding, the connection between structure
and superconductivity and on the coexistence of superconductivity and mag-
netism found in some of the rare-earth molybdenum chalcogenides. In other
transition metal cluster compounds, like Nb,I,, and HNbgl,,, the clusters are
very loosely connected and the electrons are localized onto each transition
metal octahedron which may then carry a magnetic moment. These com-
pounds show interesting coupled structural and electronic phase transitions
the nature of which was resolved by electronic-structure calculations [110].

Extensive studies of the electron-phonon coupling and the spin fluctuations
in the family of A15 compounds, where the highest transition temperatures
to superconductivity are found, have been performed by. JARLBORG et al. [111]
using the rigid MT or AS approximation and LSD theory. Moreover, the
Fermi surface of V,Si was caleulated and found in good agreement with the
one reconstructed from two-dimensional angular correlation of positron annihi-
lation radiation [112]. MATTHEISS and HAMANN [113] used the LAPW method
to calculate the charge density in V,Si and found qualitative agreement but
also significant differences with the charge densities derived from X-ray analysis.

Artificial layered materials (metallic superlattices) have recently been pre-
pared by alternate decomposition of two transition metals. Such materials
can have interesting mechanical, superconducting and magnetic properties.
The magnetic properties of various structures of CuNi were recently studied
by self-consistent spin-polarized calculations using large supercells [114]. In
all cases the Ni moment was found to be reduced compared to f.c.c. Ni.

The magnetization per atom of transition metal alloys plotted as a fune-
tion of the number of electrons per atom forms the so-called Slater-Pauling
curve shown in fig. 38. The full lines in this figure [115] were obtained by
using the construction [104] illustrated in fig. 30 together with the bare can-
onical b.c.c. or f.c.c. d-bands, the «rigid »-band approximation, the values of 7
shown in fig. 29 and the values of 4, given in table IV and interpolated be-
tween Ni, Co, Fe and Mn. The Invar alloys are those (usnally Fe,Ni, ,) f.c.c.
alloys reached just after the b.c.c. phase has become unstable and they are
characterized by having a nearly vanishing coefficient of thermal expansion.
This was originally explained by WgIss [116] in terms of a two-level model
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Fe(b.c.c.)
3 I I T
Fe(f.c.c.) Ni (f.c.c.)

Bohr magnetons per atom
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: _ .
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Fig. 38. — Magnetization per atom of transition metal alloys as a function of the num-
ber of electrons per atom: x Fe-Cr, = Ni-Fe (b.c.c.), n Ni-Fe (f.c.c.), * Fe-Co, + Co-Ni,
® Ni-Cu, ® pure metals [115].

according to which the higher level, which is populated with increasing tem-
perature, has the lower volume. This model is, in fact, consistent with the two
gtable states found in f.c.c. Fe in fig. 35. Here the low-volume nonmagnetic
state had an 8 mRyd lower energy (the integral under the #-7" curve) than
the high-volume high-moment state. If, however, we use the canonical f.c.c.
d-band in fig. 27 and shift the position of the Fermi level towards that of Ni,
we find [115] that the £-¥" curve in the right-hand side of fig. 35 essentially
moves upwards. The result is that the energy difference between the two
states decreases and finally, by the Invar composition, it inverts in agree-
ment with the Weiss model. This behaviour was also noticed by PETTIFOR [117]
and further investigated for f.c.c. FeNi by SKRIVER et al. [71]. Most recently
this picture was confirmed through detailed spin-polarized total-energy cal-
culations for f.c.c. Fe, Fe,Ni and FeNi by WILLIAMS et al. [118]. The details
of how an Invar alloy (e.g., Fe,Ni) fluctuates between the two states, however,
remains an open question. WILLIAMS et al. also considered another well-known
class of magnetic alloys, the Heussler alloys (X,MnY), and studied their
interatoniic exchange coupling by comparing F and AF spin alignments. In
a recent work [119] a generalized Slater-Pauling curve was introduced and
the trends were explained on the basis of self-consistent spin-polarized band
calculations.
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The cohesive and magnetic ground-state properties of a number of light
actinide pnictides and chalcogenides with the NaCl structure were studied
by BRoOKS [120]. For UN it was found [121] that the spin-orbit. coupling
in uranium includes a large orbital magnetic moment of — 1.5u, antiparallel
to the spin moment of 1.04,. With this taken into account in the band theory
the calculated size and shape of the magnetic form factor and the pressure
dependence of the moment agree with the experimental values.

It is presumably realistic to expect that it will be possible within the next
5-10 years to calculate phase diagrams of alloys using parameter-free DF
calculations. WILLIAMS et al. [122] have performed a huge number of self-
consistent ASW total-energy calculations for pure elements and binary alloys
as functions of atomic volume to determine the heats of formation for more
than one-hundred transition metal-transition metal and transition metal-non-
transition metal alloys. The results were generally similar to those given by
the empirical scheme of Miedema [123], but the microscopic picture was quite
different and, for transition metal-transition metal alloys, the picture derived
from the calculations of Williams et al. was close to the d-bond picture proposed
earlier by PETTIFOR [77]. KOLLAR et al. [78] recently restricted the ASA self-con-
sistency procedure with the result that they could express the energy differ-
ence between the AB and the AA and BB systems in the spirit of the force theo-
rem (subsect. 6'1) as the change in the sum of the one-electron energies (X') plus
the self-energy (U) of the charge density change. These two terms are shown as
a function of the charge transfer, g, between the atomic spheres for the noble-
metal alloys in fig. 39. The minimum of X + U yields the heat of forma-
tion and is marked with a 4. In view of the smallness of the heats of for-
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Fig. 39. — The sum of the one-electron energies (X) and the self-energy (U) of the
charge density change for CuAg, CuAu and AgAu as a function of the charge transfer
between the atomic spheres. The minimum of X + ¥ (indicated by ) gives the heat
of formation of the alloy [78]. The experimental value and Miedema’s empirical
results [123] are shown as dashed and dash-dotted lines, respectively.
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mations for the noble-metal alloys the approximate theoretical results are seen
to be in good agreement with the experimental and with Miedema’s empirical
results. We thus reproduce the curious fact that CuAu and AgAu form, while
CuAg does not. Since U is the self-energy of the charge transfer, it is positive
definite and the one-electron estimate min {X(¢)}, which corresponds to using
pure-metal AS potentials for the alloy band structure, therefore represents a
lower bound for the heat of formation. Figure 39 shows that for the noble-
metal alloys this lower bound is indeed very close to the theoretical heat of
formation. The approximate scheme of Kollar ¢t al. may thus be used to
interpret the heats of formation in a simple and quite general way and, if
needed, to speed up the calculations. So far, however, it assumes the validity
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Fig. 40. — Average partial densities of states for the amorphous metal, FegB,,. The
vertical line indicates the Fermi energy and the arrows the F, values [41].
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of Vegard’s law, i.c. that the atomic volume of the alloy equals the average
of the atomic volume of the constituents. This assumption is, for instance,
not justified for the interesting series of ionic compounds LiAu — CsAu whose
electronic and cohesive properties were recently studied by KoENIG ¢t al. [124].

In order to calculate the electronic structure of nonperiodic solids, it is
necessary to use a set of localized orbitals in connection with a moment
method [125] or the recursion method [42]. With the new localized MTOs
introduced in sect. 4 FUIJWARA [41] has for the first time performed self-
consistent calculations for amorphous metals. The average partial densities of
states for Fey,B,, are shown in fig. 40. The strong mixing between the Fe and B
orbitals may be observed, in particular does the B s-peak seen in the figure
only contain 0.8 electrons and it, therefore, only represents the lower, bonding
part of the B s-band. The antibonding part is at high energies outside the
frame of the fignre. With this new method it should now be possible to study
the interesting magnetic properties of amorphous transition metals.

8. — Surface calculations.

In this section we shall review some calculations of surface properties using
the LMTO method and the linear augmented-plane-wave (LAPW) method.
Most of these calculations have been performed by the LAPW method.

Until now the main advantage of the LAPW method as compared with
the LMTO method has been the ease with which a general potential with no
shape approximation could be included. Near the surface the potential varies
rapidly perpendicular to the surface (fig. 1) and hitherto this was not as easily
incorporated in the LMTO method as in the LAPW method. With the new
localized orbitals the situation may change. The disadvantage of the LAPW
method is the large basis set. 40-60 basis functions per atom are necessary, while
9 orbitals per atom are sufficient in the LMTO method. This makes the com-
putational speed of the latter superior to that of the former. Furthermore, the
LAPW method is a brute-force method, because with basis functions derived
from plane waves the physical interpretation of the results in terms of, for
instance, bond orbitals is difficult. Finally the canonical picture of the band
structure as described in this lecture is not utilized in this method.

KAsowsk1 [126] was the first to study surface electronic properties by a
LMTO-related method (the LOMTO method). He calculated the surface elec-
tronic structure of clean copper, tungsten and molybdenum. For the latter
two, a possible relaxation of the surface layer was taken into account. Later
he studied chemisorption of O, Na and CO on the Ni surface. More recently
KASOWSKI and QARUTHERS [126] applied a modified version of this method
to study the interaction on the Ni(001) surface of @) two GO molecules which
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react on the surface to give free CO, and carbon on the surface, and b) for-
maldehyde whose CO bond is broken and CH, is formed.

Recently the LMTO method was extended to surface calculations [31].
Like in all uses of the LAPW method for surface studies referred to below,
the film geometry consisting of 1-20 atomic layers was also adopted for the
LMTO method. MA et al. [31] used their method to calculate the electronic
structure of a noble-metal (Cu) monolager on transition metal (Ru or Ni)
surfaces. They obtained good agreement with UPS measurements, which show
shift to higher binding energy of the top of the Cu d-bands when Cu is depos-
ited on the Ru surface, and with EELS experiments which show filling and
narrowing of the Cu d-bands when Cu is deposited on a Ni substrate.

The rest of the calculations that we shall mention here were performed by
the LAPW method. All relativistic effects were included in these calculations
except the spin-orbit coupling.

JEPSEN ¢t al. [15] performed spin-polarized calculations for a series of
Ni(001) films of different thickness which enabled an extrapolation of the
results to the semi-infinite crystal. The single most interesting result of these
caleulations is the enhancement of the magnetic moment at the surface which
is roughly 109, larger than the bulk value. This prediction was later ver-
ified experimentally by spin-polarized LEED [127]. Recently a similar cal-
culation for the Ni(110) surface by KRAKAUER ¢f al. [128] also shows an
enhanced moment at this surface. On the other hand, when one layer of Ni
is deposited on Cu(001), the Ni magnetic moment is reduced by 379, [129],
and, when the Cu surface is covered by two Ni layers, then the interface Ni
layer has a moment reduction of 249,, while, in the surface layer, the mo-
ment is somewhat increased over the bulk value.

Ni catalyzes the formation of methane from carbon monoxide and hydrogen,
but small amounts of sulfur reduce the reaction rate by orders of magnitude.
In order to study the role played by sulfur as a catalytic poison, RICHTER
¢t al. [130] calculated the electronic structure and charge density of a ¢(2 X2)
overlayer of sulfur on Ni(001). Charge is transferred from the Ni surface to
sulfur and the authors speculate that the reduced Ni charge prohibits the
breaking of the CO bond which is the first step in the catalytic process.

For the nearly-free-electron metal Al the electronic structures of both the
clean (001) and (111) surfaces[131] as well as for oxygen chemisorbed on
the (111) face[132] and Na chemisorbed on the (001) face [133] have been
caleulated. The results which are in good agreement with experiments include
work functions, surface states and core level shifts.

The clean unreconstructed tungsten surface has been studied in some de-
tail [134]. The energy and symmetry of the calculated surface states and
resonances (SR) were found to be in general agreement with angular-resolved
photoemission spectroscopy (ARPS) and field emission energy distribution
data, in particular the so-called «Swanson hump » was accounted for. How-
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ever, some recent ARPS measurements of the SR along X in the surface
Brillouin zone and close to the Fermi energy differ substautially from the
calculated values. A relaxation of the surface layer could not resolve this
discrepancy. Furthermore, on the basis of the calculated surface suscepti-
bility, the «nesting » features of the calculated SR bands along X were sug-
gested to drive the ¢(2 X 2) reconstruction at low temperatures. This mechanism
may, therefore, have to be revised on the basis of the new experiments. Since
tungsten is a heavy transition metal it may be that spin-orbit coupling has
to be included in order to obtain agreement with the experimental findings.

The low-temperature reconstruction of the W(001) surface can be healed
by hydrogen adsorption. This was explained by RICHTER et al. [130, 135], who
calculated the electronic structure and charge density of a dense p(1 x1) layer
of H on W(001) for different H-W separations. They found that hydrogen
forms chemical bonds with the surface tungsten atoms and that the clean
tungsten surface states dissapear. The hydrogen overlayer screens the outer-
most tungsten atoms from the perturbation of the vacuum with the result
that the charge distribution of the outermost layer resembles that of the bulk.

The technologically important cesiated tungsten surface was studied by
WIMMER et al. [136] with Cs in a ¢(2 X 2) coverage and for three different Cs-W
distances. They found that the well-known reduction of the work function
due to cesiation arises because Cs forms a metallic overlayer with its valence
electrons shifted towards the W surface. This reduces the effective electrostatic
surface barrier and the work function by 2 to 2.5 eV depending on the Cs-W
separation,

The determination of the spatial position of surface atoms, adsorbed atoms
and molecules is a major challenge in surface physics. The accurate surface
geometry has been established only for very few systems and, by far, the most
of these have been determined by LEED experiments interpreted by calcula-
tions. HAMANN [22] has suggested that atomic diffraction could be used as a
complement to LEED. The atom-surface interaction potential is to lowest order
proportional to the electron density far outside the surface [137]. This may
readily be calculated, for instance, by the LAPW method, for different atomic
positions at the surface and the best agreement with the interaction potential
extracted from experimental atomic diffraction data may then determine the
surface geometry. HAMANN tested this idea on, among other systems, hydrogen
on Ni(110) and found best agreement between the theoretical and experimental
interaction potential with hydrogen in the so-called « buckled bridge» posi-
tion. In a similar way the Cl adsorption site on a Ag(001) surface was deter-
mined [138]. Two configurations which had been previously suggested by LEED
analysis were tested: a simple-overlayer model (SOM) where the Cl ad-atoms
occupy every second fourfold hollow site above the Ag surface layer, and a
mixed-layer model (MLM) where the remaining fourfold hollow sites are filled
with Ag atoms. Even with indetermined vertical distances of the Ol-Ag layer
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the MLM could be excluded because it had an order of magnitude smaller
corrugation than the SOM, in disagreement with experiments.

Finally we would like to mention two interesting surface calculations which
appeared recently. They both concern transition metal overlayers on tran-
sition metal surfaces.

The first one [139] is for palladium on niobium. The clean Pd surface and
the clean Nb surface adsorbe hydrogen while the Pd-Nb system has zero
sticking coefficient. The calculations of El-Batanouny et al. for a Pd mono-
layer on a Nb(110) surface show that charge is transferred from Nb to Pd in
agreement with the much larger electronegativity of Pd. Consequently the Pd
d-bands are filled and the resulting surface band structure resembles that of
a noble metal for which it is known that no dissociation of H, occurs.

In the second calculation [140] the clean, the Ag- and Pd-covered Rh(001)
surface and the clean and Ag-covered Rh(111) surface were studied. Ag adsorp-
tion lowers the work function of Rh, while Pd has a negligible effect. This
was explained in terms of the Pauling electronegativities. Ag has a smaller
electronegativity (1.9) than Rh (2.2) and Pd (2.2). Therefore, Ag tends to
transfer charge to the Rh substrate lowering its work function, while nearly
no charge transfer occurs between Pd and Rh, leaving the work function
unchanged. It is well known experimentally that the closest-packed surface
has the highest work function, and this was confirmed here for the clean
surfaces, as well as for the Ag-covered surfaces. From the calculated core
level shifts the heat-of-adsorption differences were predicted and they were
found to be in satisfactory agreement with the empirical values of Miedema
and Dorleijn [141].

9, — Conclusion and outlook.

Ten years ago the popular methods for accurate solution of the one-electron
problem for metals in general were the KKR and APW methods which treat
this problem as one of scattering between spherically symmetric muffin-tin
wells. These methods have now been superseded by their descendants, the
linear methods (LMTO, ASW, LAPW, etc.), which have made self-consistent
calculations feasible for realistic systems and as functions of external param-
eters such as the atomic positions. As a result, a vast number of parameter-
free density-functional calculations of cohesive and magnetic ground-state
properties have been carried out for a variety of metals and we have learned
how surprisingly well the local approximation to density-functional theory
works [1,142]. Moreover, we are on the way to obtain a simple, quantitative
understanding of electronic properties such as chemical binding and magnetic
structures. First attempts to obtain finite-temperature properties have ap-
peared [143].
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As a further step towards the goal of achieving a quantitative understanding
of the properties of real materials under realistic conditions we have, in this
lecture, shown how the linear methods, specifically the LMTO method, may
be transformed exactly into a minimal-basis first-principles tight-binding
method of the most simple, two-centre form. The hopping integrals factorize
into products of atomic potential parameters and reduced so-called eanonical-
hopping integrals which only depend on the structure. In this way we believe
to have bridged the gap between a class of well-tried first-principles methods
and the empirical tight-binding {80], or Hiickel {67, 82], methods upon which
much of our present «intuitive » nnderstanding of realistic systems is based.

A further ingredient of the empirical descriptions is to approximate the
total eletronic energy by the sum of the one-electron energies. This, we have
shown, can to some extent be justified from the so-called force theorem which
is based on the stationary property of the total energy with respect to changes
of the electronic density. Clearly, more work is needed, not only to establish
the accuracy of the force theorem approach [144] for specific applications, snch
as structural energies or heats of formation which go beyond first-order per-
turbations, but also in order to explain the results, say in terms of a real-
space description of the chemical bonding. Specifically, one might seek a con-
nection between the first-principles description of forces or pressures in terms
of individual orbital contributions and the chemist’s empirical overlap popu-
lation analysis.

We have summarized the electronic structure of 33 elemental metals by
tabulating the reduced hopping integrals, as well as the self-consistently cal-
culated potential parameters and their volume derivatives around the equi-
librinm atomic volume. These tables should be useful not only for studies
of the properties of elemental metals but also for obtaining an estimate of the
electronic properties of intermetallic compounds.

A computational advantage of the new tight-binding formulation is that
it makes the treatment of a general, nonspherically symmetric MT or AS
potential much simpler than previously [28-30] but this remains to be carried
out in practice. Also, the formalism that we have given for displacing the
atomic positions from those of a Bravais lattice has so far only been applied
(to the case of amorphous metals) in the lowest order. This technique is clearly
needed for the treatment [46] of atomic relaxations in the vicinity of an im-
purity, for the calculation of phonon spectra using the Frohlich representation
where the orbitals move with the atoms and for the caleulation of the higher-
order force constants.

Finally, when considering narrow 3d- or 5f-bands, we have seen the need
to go beyond the local approximation to density-functional theory. This is
an urgent problem.
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