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Electron-phonon coupling in the self-consistent Born approximation of the t-J model
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We study an undoped t-J model with electron-phonon interaction using the self-consistent Born approxima-
tion �SCBA�. By neglecting vertex corrections, the SCBA solves a boson-holon model, where a holon couples
to phonons and magnons. Comparison with exact diagonalization results for the t-J model suggests that the
SCBA describes the electron-phonon interaction fairly accurately over a substantial range of J / t values. Exact
diagonalization of the boson-holon model shows that the deviations are mainly due to the neglect of vertex
corrections for small J / t and due to the replacement of the t-J model by the boson-holon model for large J / t.
For typical values of J / t, the electron-phonon part �ep of the electron self-energy has comparable contributions
from the second-order diagram in the electron-phonon interaction and a phonon-induced change of magnon
diagrams. A very simple approximation to �ep gives a rather accurate effective mass. Using this approximation,
we study the factors influencing the electron-phonon interaction. Typically, we find that the magnons nominally
have a stronger coupling to the holon than the phonons. The phonons, nevertheless, drive the formation of
small polarons �self-localization� due to important differences between the character of the phonon and mag-
non couplings.
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I. INTRODUCTION

There have recently been several experimental indications
that the electron-phonon interaction plays a substantial role
for properties of cuprates, for instance in photoemission1–3

and neutron scattering work.4 The strong effects of the Cou-
lomb interaction in the cuprates are often taken into account
by using the t-J model.5 Including phonons in the t-J model,
it was concluded that the Coulomb interaction can enhance
the effects of the electron-phonon interaction for undoped
cuprates.6,7 It is then interesting to study this aspect further.
A simple method for treating the undoped t-J model is the
self-consistent Born approximation �SCBA�,8–12 which can
also be applied to the t-J model with phonons.6,13 This
method assumes a quantum Néel ground state for the un-
doped system. The excitations of the spin system are de-
scribed by antiferromagnetic magnons. A hole created in,
e.g., photoemission is assumed to interact with magnons and
phonons, which are both treated as bosons. This model is
referred to here as the boson-holon model. The electron self-
energy of this model is expressed in terms of the simplest
diagrams, including a boson �magnon or phonon� Green’s
function and a self-consistent electron Green’s function. Ver-
tex corrections are neglected.

Here we extend the SCBA study of Ramsak et al.,6 focus-
ing on the limit of weak electron-phonon coupling for 0.2
�J / t�2. For strong electron-phonon coupling, the SCBA is
known to break down.7 We first compare results for the qua-
siparticle weight and energy using the SCBA and exact di-
agonalization of the t-J model. The results suggest that the
SCBA describes the electron-phonon interaction reasonably
well for a substantial range of J / t values, but that it is less
accurate than for the t-J model without phonons. To trace the
sources of errors in the SCBA, we use exact diagonalization
for the boson-holon model. Comparison between these re-
sults and results from the SCBA shows that for small

J / t��0.2�, errors in the SCBA are mainly due to the neglect
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of vertex corrections in the SCBA, while for large J / t the
main source of errors is the replacement of the t-J model by
the boson-holon model. We then study the electron-phonon
contributions to the electron self-energy. There is a contribu-
tion from the diagram containing one phonon and one elec-
tron Green’s function, which for noninteracting electrons is
the leading contribution. Here there is a comparable contri-
bution from diagrams containing magnons and one electron
Green’s function due to the change of the self-consistent
electron Green’s function induced by the electron-phonon
interaction. We also study the effective mass. By slightly
modifying a previous approach,6 we obtain a very simple
formula for the effective mass, which agrees rather well with
exact results within the SCBA. This formula is used to illus-
trate the factors influencing the strength of the electron-
phonon coupling in the undoped t-J model. We discuss the
important difference between the coupling to magnons and
phonons in terms of strength and effects of vertex correc-
tions. We comment on the implications for formation of
small polarons �self-localization�.

The boson-holon model and the SCBA are described in
Sec. II. The SCBA results are compared with exact diagonal-
ization results for the t-J model in Sec. III. In Sec. IV, we
compare with exact diagonalization for the holon-boson
model to determine the sources of errors in the SCBA. The
contributions to the electron-phonon part of the electron self-
energy and to the effective mass are discussed in Secs. V and
VI, respectively. In Sec. VII, we compare the coupling to
magnons and phonons and discuss polaron formation.

II. MODEL AND METHOD

The t-J model5 is given by the Hamiltonian

Ht-J = J�
�i,j�

�Si · S j −
ninj

4
� − t �

�i,j��
�c̃i�

† c̃j� + H . c . � , �1�

where c̃i�
† creates a hole on site i if this site previously had no
hole. The Zhang-Rice singlets are represented by empty
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sites. Here t is a hopping integral, J is the exchange interac-
tion, Si is the spin on site Ri, and ni is the occupation of site
i. We use the electron-phonon interaction

Hep =
1

�N
�
i,q

gq�ni − 1��bq + b−q
† �eiq·Ri, �2�

where N is the number of sites and bq
† creates a phonon with

the wave vector q. We assume an on-site coupling with the
strength gq. The coupling to hopping integrals and to the
spin-spin interaction is neglected. For instance, for the planar
�half-�breathing mode in the cuprates it is found that this is a
good model.14 In the following, we assume in addition a
Holstein type of coupling, i.e., gq	g is q-independent.

Following previous work6,8–12 for the undoped system, the
Hamiltonian Ht-J+Hep is approximately rewritten in terms of
a boson-holon model, where spinless holons interact with
phonons and antiferromagnetic magnons, treated as bosons,

H̃ =
1

�N
�
kq


hk−q
† hk�Mkqaq

† + gqbq
†� + H . c . �

+ �
q

��qaq
†aq + �phbq

†bq� , �3�

where hk
† and aq

† create spinless holons and antiferromagnetic
magnons, respectively. The fermion-magnon coupling is
given by

Mkq = �8t
�k−q
�	q

−1 + 1 − �ksgn��q��	q
−1 − 1� , �4�

where �q= �cos qx+cos qy� /2 and 	q= �1−�q
2�1/2. The mag-

non frequency is given by �q=2J	q and the phonon fre-
quency by �ph.

The Hamiltonian H̃ is treated in the self-consistent Born
approximation. The electron self-energy is then given
by6,8–12

��k,�� =
1

N
�
q


Mkq
2 G�k − q,� − �q� + gq

2G�k − q,� − �ph�� ,

�5�

where G�k ,�� is the holon Green’s function,

G�k,�� =
1

� − ��k,��
. �6�

Setting gq=0, we obtain the corresponding quantities without
electron-phonon coupling, G0�k ,�� and �0�k ,��. We also
introduce the electron-phonon part of the electron self-
energy,

�ep�k,�� = ��k,�� − �0�k,�� , �7�

and split �ep�k ,�� in two contributions,

�ep
2nd�k,�� =

1

N
�
q

gq
2G�k − q,� − �ph� �8�
and
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�ep

 �k,�� =

1

N
�
q

Mkq
2 
G�k − q,� − �q� − G0�k − q,� − �q�� .

�9�

Here �ep
2nd�k ,�� corresponds to the second order diagram in

the electron-phonon coupling. For noninteracting electrons
this is the leading contribution in g2 to �. For the interacting
system there is a second contribution of the same order in g,
�ep


 �k ,��. This is due to the change of the contribution from
the diagram describing the coupling to magnons caused by
the change of the Green’s function when the electron-phonon
coupling is turned on. We also introduce6

�ep
coh�k,�� =

1

N
�
q

gq
2G0

coh�k − q,� − �ph� , �10�

where G0
coh�k−q ,�−�ph� only includes the coherent part of

the Green’s function,

G0
coh�k,�� =

Z0�k�
� − �0�k�

. �11�

Here Z0�k� and �0�k� are the quasiparticle strength and en-
ergy, respectively, in a system where g=0. Since we consider
the limit of weak electron-phonon coupling below, we have
neglected the effect of the electron-phonon coupling on Z�k�
and ��k� in Eqs. �10� and �11�. The quasiparticle energy is
determined by the Dyson equation,

�0�k� = �0„k,�0�k�… . �12�

The shift of the quasiparticle energy due to the electron-
phonon interaction is then


��k� 	 ��k� − �0�k� � Z0�k��ep„k,�0�k�… , �13�

where

Z0�k� = 1 −
��0�k,��

��
�

�=�0�k�
�−1

. �14�

III. COMPARISON WITH EXACT DIAGONALIZATION

There have been extensive comparisons of results from
the SCBA and exact diagonalization for small clusters for the
case of no electron-phonon interaction,8–12 and the two meth-
ods have been found to agree rather well. Here we therefore
focus on the changes due to the electron-phonon interaction.
We define a dimensionless electron-phonon interaction �Z
from

Z0�/2,/2�
Z�/2,/2�

− 1 	 �Z, �15�

where Z� /2 , /2� is the quasiparticle weight for k
= � /2 , /2� including the electron-phonon coupling. We
study a 4�4 lattice with periodic boundary conditions in the
limit of weak electron-phonon coupling, for which exact di-
agonalization can easily be performed. Following earlier
work,6,7 we define � as the corresponding quantity for a
0
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single electron at the bottom of the band of a two-
dimensional Holstein model with nearest-neighbor hopping.
Assuming �ph/ t�1 and using a quadratic expansion of the
band, we obtain

�0 =
g2

4t�ph
. �16�

The calculations are done for small enough g that the ratio
�Z /�0 is converged to the g→0 limit. We emphasize that by
considering the bottom of the band, the resulting �0 is par-
ticularly small.15 At larger filling the corresponding �0 is
larger and the resulting enhancement of �Z is smaller. It is
necessary to pay some extra attention to the q=0 coupling,
g0. By using Eqs. �10�, �11�, and �13�, we find that in the
SCBA this component gives a contribution

1

N
� g0

�ph
�2

Z0�k�2 �17�

to �Z. The q=0 component just couples to the total number
of electrons. Since the Green’s function describes the addi-
tion or removal of an electron, we can alternatively calculate
the exact spectrum for one electron coupling to the q=0
component and then convolute this spectrum with the spec-
trum resulting from the coupling to the q�0 components.
The exact q=0 contribution to �Z is then

1

N
� g0

�ph
�2

. �18�

This differs from Eq. �17� by a factor of Z0�k�2, which is
typically a very large difference. Although the comparison
with exact diagonalization can only be done for a small clus-
ter, we are primarily interested in infinite systems where the
q=0 component plays no role. In discussing �Z and 
� be-
low, we therefore exclude the q=0 coupling.

Figure 1 shows exact results �full line� and results from
the SCBA �dotted line� for �ph/ t=0.1. The dashed and dash-
dotted curve are discussed in Sec. IV. The results agree quali-

FIG. 1. �Z /�0 
Eqs. �15� and �16�� for �ph/ t=0.1 as a function
of J / t for a 4�4 cluster according to exact diagonalization of the
t-J �full line� and the boson-holon �dashed line� models, the SCBA
�dotted line� and SCBA together with the lowest-order vertex cor-
rections �dash-dotted line� in the limit of a small coupling g.
tatively. However, quantitatively the agreement is not as
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good as found for the model without electron-phonon inter-
action. This is, in particular, the case for small J / t, which are
values usually assigned to the high-Tc cuprates, and for large
values of J / t. For instance, �Z /�0 is about 3.3 and 5.2 ac-
cording to the exact calculation and the SCBA, respectively,
for J / t=0.3. Figure 2 shows the energy shift 
�� /2 , /2�

Eq. �13�� due to the electron-phonon interaction for a 4
�4 cluster. As in the case of �Z, the SCBA deviates appre-
ciably from the exact results for small and large values of
J / t. The reason for these deviations is discussed in Sec. IV.
The agreement with exact results is still good enough to
suggest that we can use the SCBA for a qualitative discus-
sion of properties of the t-J model with phonons.

IV. ACCURACY OF APPROXIMATIONS BEHIND THE
SCBA

In view of the results in Figs. 1 and 2, it is interesting to
ask for the sources of errors in the SCBA. We distinguish
between two classes of errors: �i� the replacement of the t
-J model in Eq. �1� by the boson-holon model in Eq. �3� and
�ii� the neglect of vertex corrections when solving this
model.

We consider the first class of errors by solving the boson-
holon model 
Eq. �3�� using exact diagonalization in the limit
of weak electron-phonon coupling. The Hilbert space can
then be limited by only considering states with at most one
phonon excited. Due to the strong holon-magnon coupling,
however, it is necessary to consider states with many excited
magnons. Figures 1 and 2 compare these results with results
from diagonalizing the t-J model. Except for large J / t, the
agreement is very good. This shows that for small and inter-
mediate values of J / t, the errors in the SCBA are mainly due
to vertex corrections, while for large J / t the replacement of
the t-J model by the boson-holon model leads to appreciable
errors.

We next consider vertex corrections. Figure 3�a� shows a
second-order diagram that is not included in the SCBA, due

FIG. 2. Energy shift 
� for k= � /2 , /2� 
Eq. �13�� for a 4
�4 cluster with �ph/ t=0.1 according to exact diagonalization of
the t-J �full line� and the boson-holon �dashed line� models, the
SCBA �dotted line� and SCBA together with the lowest-order vertex
corrections �dash-dotted line� in the limit of a small coupling g.
to the crossing magnon lines and resulting vertex correction.
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It was shown by Liu and Manousakis12 that this diagram and
many other diagrams neglected in the SCBA are actually
zero due to the symmetry of Mkq. This makes it understand-
able why the neglect of vertex corrections is found to be a
rather good approximation for magnons.

In the limit of weak electron-phonon coupling discussed
in this paper, diagrams with crossing phonon lines do not
contribute to lowest order in gq

2. Diagrams involving magnon
line�s� crossing one phonon line, however, do contribute to
this order in gq

2. Figure 3�b� shows the lowest order diagram
of this type. In contrast to the pure magnon diagram in Fig.
3�a�, the diagram in Fig. 3�b� is in general not zero. We have
included this diagram and an equivalent diagram in the cal-
culations, using self-consistent propagators for all electron
lines in the calculation of �Z and 
�. The results are shown
in Figs. 1 and 2 by the dash-dotted lines. For small J / t, the
correction to the SCBA �dashed curve� is large �almost a
factor of 2� and it goes in the correct direction compared
with the exact result for boson-holon �dashed line� and t-J
models �full curve�. Some higher-order diagrams are not
small, although the sums of all higher-order diagrams appar-
ently almost cancel. The rapid convergence for small J / t
suggested by Figs. 1 and 2 is therefore somewhat misleading.
We note that these lowest order vertex corrections have a
substantially smaller effect on the self-energy for larger clus-
ters. In these cases, however, it is not possible to perform
exact diagonalization calculations, and it is therefore not
clear if the SCBA becomes more accurate for large clusters.

We observe that diagrams of the type in Fig. 3�b� were
neglected in the calculation of the criterion for polaron
formation.7 If the results in Figs. 1 and 2 can be extrapolated
to large clusters and strong coupling, they suggest that the
earlier criterion7 for polaron formation may have underesti-
mated the critical �.

V. QUASIPARTICLE ENERGY

In the remainder of the paper, we focus on the SCBA and
first analyze the quasiparticle energies. We have performed
calculations for 96�96 lattices, using t=1, J / t=0.3, g / t
=0.05, and �ph/ t=0.1. The self-energy was broadened by
adding a small imaginary part � / t=0.005−0.01 to the en-
ergy. Figure 4 compares results for 
��k� �full line�, deter-
mined from the Dyson equation using the full self-energy,
with Z �k�� (k ,� �k�) 
Eq. �13�� using three approxima-

FIG. 3. Self-energy diagrams including �a� two crossing magnon
lines and �b� crossing magnon and phonon lines. The magnon, pho-
non, and self-consistent electron propagators are represented by
dashed, dash-dotted, and full lines, respectively.
0 ep 0
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tions for the self-energy. The figure illustrates that �ep
coh

�dashed line� is a rather good approximation to �ep
2nd �dotted

line�, i.e., the incoherent part of G0 included in �ep
2nd does not

contribute much to the self-energy. It is interesting, however,
that �ep

2nd �dotted line� is a rather poor approximation to
�ep �dash-dotted line�, and it only contributes about half the
magnitude for J / t=0.3. Both �ep

2nd and �ep

 are of the order

gq
2. For large values of J / t, this difference is smaller. For

noninteracting electrons, �ep is the only contribution of this
order, and the interest has therefore often focused on this
contribution. Figure 4 shows that this is not a good approxi-
mation for the present model and J / t=0.3. The full line and
the dash-dotted line differ slightly since the solution in Eq.
�13� of the Dyson equation is only approximate for a finite g.

To better understand the results for �ep
2nd, we notice that

for a q-independent gq	g, Im�ep
2nd takes a very simple form,

Im�ep
2nd�k,�� = g2A�� − �ph� , �19�

where A���=�kImG0�k ,�− i0+� / �N� is the k-averaged
spectral function. Figure 5 shows A���. Since we used

FIG. 4. Z0�k��ep(k ,�0�k�) as a function of k along the �0,0�
− � /2 , /2�, � /2 , /2�− �0,�, and �0,�− �0,0� directions. Re-
sults are shown for �ep

coh 
Eq. �10�� �dashed line�, �ep
2nd 
Eq. �8��

�dotted line�, and �ep 
Eq. �7�� �dash-dotted line� as well as for the
exact 
��k� �full line�. The inset shows the dispersion of �0�k�. The
parameters are t=1, J / t=0.3, g / t=0.05, and �ph/ t=0.1.

FIG. 5. Spectral function A��� with �full line� and without
�dashed line� electron-phonon coupling. The parameters are the
same as in Fig. 4, except g=0.1t. A Lorentzian broadening with

FWHM 0.2t was used.

-4



ELECTRON-PHONON COUPLING IN THE SELF-¼ PHYSICAL REVIEW B 73, 174521 �2006�
�ph/ t=0.1 in Fig. 4, the onset of Im�ep has been shifted by
0.1t above the bottom of the band. States below this onset are
then shifted strongly downwards, while states above the on-
set are shifted less or are even shifted upwards. From the
inset of Fig. 4, we can see that states around � /2 , /2� and
along the line � /2 , /2�− � ,0� are below the onset and are
shifted strongly downwards, in particular states that are just
below the onset, while �ep

2nd becomes positive for k vectors
along the lines �0,0�− � /2 , /2� and � ,0�− �0,0� close to
�0,0�.

In a similar way, we can understand �ep

 
Eq. �9��, al-

though in this case the coupling Mkq and the energy �q have
strong k and q dependences. �ep


 is due to the coupling to the
changes of A�k ,�� caused by the electron-phonon coupling.
Figure 5 shows the k-average A��� with �full line� and with-
out �dashed line� electron-phonon coupling. The parameters
are the same as for Fig. 4, except that g / t=0.1 to enhance the
effect of the electron-phonon coupling. This difference in
A��� is positive and particularly large at ��−2.2. Since �q

can be fairly large, ranging from zero to 2J=0.6t, Im�ep

 is

shifted substantially upwards in frequency. As a result, Re�ep



is negative for the whole quasiparticle band.

VI. EFFECTIVE MASS

We next consider the effective mass, essentially following
Ramsak et al.6 Since �ep


 is relatively k-independent, we ne-
glect it and we only consider �ep

coh. For simplicity, we assume
that Z0�k�=Z0� /2 , /2� is k-independent. We furthermore
approximate the quasiparticle dispersion by assuming that it
can be expanded quadratically around the four minima
�± /2 , ± /2�. Two masses are introduced, m� and m�,
which describe the dispersion parallel and perpendicular to
the �0,0�− � ,� direction, respectively. The summation
over the Brillouin zone in Eq. �10� is replaced by an integra-
tion over all of q space, assuming that contributions far away
from �± /2 , ± /2� are small because of the large energy
denominator in Eqs. �10� and �11�. By using the solution of
the Dyson equation �13�, we then obtain


��k� = 4� 1

2
�2� d2q

g2Z0
2

�0�k� − �0�k − q� − �ph
, �20�

where the factor 4 is due to the presence of four equivalent
minima �± /2 , ± /2�. One factor of Z0 comes from the
Green’s function and a second factor from solving the Dyson
equation. Defining the effective mass along the parallel di-
rection as 1/m*=d2��k� /dk�

2, we obtain

m�

m* − 1 = −
2g2Z0

2�m�m�

�ph
	 � 1

1 + �m
− 1� , �21�

where the second equality defines the electron-phonon cou-
pling �m. Focusing on large J / t, Ramsak et al.6 obtained the
same result except for a factor Z0 resulting from the Dyson
equation �13�. Without this factor, the rather good agreement
with the exact result in Fig. 6 would be lost for small J / t. �m
is compared with the corresponding quantity for the Holstein

6
model, which is identical to the �0 defined via Z in Eq. �16�.
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Figure 6 shows results for �m /�0 as a function of J / t,
using the second derivative of the exact ��k� �full line� and
of ��k� obtained from �el

coh �dotted line� as well as Eq. �21�
�dashed line�. �m /�0 is different from �Z /�0 in Fig. 1. The
main reason for this difference is that Fig. 1 shows results for
a 4�4 cluster while Fig. 6 shows results for a large cluster
�96�96 or 128�128�, but the two quantities are somewhat
different also for identical clusters. The results based on �el

coh

�dotted line� agree rather well with the exact results for in-
termediate and large values of J / t, while they are too small
for small values of J / t. The deviation for small J / t is prima-
rily due to the neglect of �ep


 . This term is particularly im-
portant for small J / t, since the magnon energy entering in
Eq. �9� is proportional to J. For large J / t, the deviation is
mainly due to the neglect of the incoherent part of G. Equa-
tion �21� �dashed curve�, which is an approximation to the
dotted curve, gives a larger �m and it agrees better with the
exact result. For small J / t, the increase is primarily due to
neglect of k dependence of Z0�k� in the Dyson equation
when deriving Eq. �21�. For large J / t, the increase is due to
several small errors in the approximations. The coupling
g / t=0.1 is somewhat too large to give the weak-coupling
limit, in particular for large J / t.

We are now in the position to interpret the enhancement
of �m compared with �0 obtained at the bottom of the band
for a Holstein model. Equation �21� contains a factor Z0

2 that
tends to reduce the coupling due to the transfer of spectral
weight far away from the energies studied. On the other
hand, the factor �m�m� describes how the energy denomina-
tor is reduced by the large effective masses, bringing spectral
weight closer to the relevant energies.6 This is an effect of
correlation and antiferromagnetism, and it is important for
the enhancement of the electron-phonon interaction in this
model. In addition, there is a factor of 4 resulting from the
presence of the four equivalent minima �± /2 , ± /2�. For
J / t=0.2, we find that Z0

2=0.05 and �m�m�=10m0, where
m0=1/ �2t� is the mass at the bottom of the band in the Hol-
stein model. In this case, the factor 4 from the equivalent
minima is crucial, since the electron-phonon interaction
would otherwise have been suppressed in the t-J model,

FIG. 6. �m /�0 as a function of J / t calculated from the quasipar-
ticle energy ��k� �full line�, Eq. �21� �dashed line�, and using the
self-energy �ep

coh 
Eq. �10��. The parameters are the same as in Fig.
4, except that g=0.1t and J / t is varied.
while now it is enhanced by a factor of 1.8. For J / t=2, we
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obtain Z0
2=0.57 and �m�m�=6.5m0, giving the enhancement

16 
15 according to Eq. �21��. In this case, the large mass
plays a crucial role for the enhancement of the electron-
phonon interaction. We notice, however, that the comparison
here has been done with �0 calculated for a single electron at
the bottom of the band of a Holstein model. Had the com-
parison been made with a half-filled Holstein model, the re-
sult would have been a smaller enhancement or no enhance-
ment at all.15 By starting from the three-band model and
studying the half-breathing phonon, however, it is found that
the coupling constants gq are enhanced by correlation
effects.16

VII. COMPARISON OF COUPLING TO MAGNONS AND
PHONONS

We define an average dimensionless coupling constant for
the magnons,

�M 	
1

N
�
k

�Mk =
1

N2�
qk

2Mkq
2

8t�q
=

t

2J
, �22�

where �M�/2,/2�=0.65t /J. For La2CuO4, the corresponding
quantity due to phonons is �=1.2.17 For a typical value J / t
=0.3,18 the coupling to magnons, �M =1.67 and �M�/2,/2�
=2.2, is stronger than the coupling to phonons. It might then
seem that the coupling to magnons is more important for the
experimentally observed2 polaron formation in undoped cu-
prates. This is, however, misleading. The value of � needed
for formation of small polarons is reduced with the boson
frequency.19–21 This somewhat favors phonons, since they
typically have lower frequencies than the magnon frequen-
cies of the order of J. To see the main difference, however, it
is necessary to consider vertex corrections.

To describe the formation of small polarons due to
phonons, it is crucial to go beyond the SCBA, since vertex
corrections including phonon propagators become very im-

7
portant in the strong-coupling limit. Actually, if these vertex
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corrections are neglected, polaron formation is not properly
obtained.7 On the other hand, it has been argued that vertex
corrections including magnon propagators are not very im-
portant in the t-J model.8,9,11,12 As discussed in Sec. IV, the
lowest-order vertex correction in Fig. 3�a� is identically zero
due to the symmetry of Mkq, and classes of higher-order
vertex corrections are also zero.12 If we assume a Holstein
type of electron-phonon coupling, however, there are no
similar arguments for diagrams with crossing phonon lines
being zero. This explains why the holon-phonon interaction,
but not the holon-magnon interaction, leads to polaron for-
mation.

VIII. SUMMARY

To summarize, we have studied the self-consistent Born
approximation �SCBA� in the limit of weak electron-phonon
coupling. While the SCBA has been shown to be quite accu-
rate for a pure t-J model, we find that it is less accurate when
the electron-phonon interaction is included. To study the rea-
son for this, we performed exact diagonalization calculations
for the boson-holon model. Comparing the results with the
SCBA results, we find that the main errors of the SCBA are
due to the neglect of vertex corrections for small J / t and due
to the introduction of the boson-holon model itself for large
J / t. Studying the electron-phonon part of the self-energy, we
find that in addition to the second-order term �ep

2nd known
from the theory of noninteracting electrons, there is a second
term of the same order, �ep


 . For J / t�0.3, this term makes a
similar contribution to �ep as �ep

2nd. We have shown that a
very simple derivation of the effective mass gives a rather
accurate result, illustrating the factors enhancing and sup-
pressing the electron-phonon coupling. The coupling to mag-
nons can be considered stronger than the coupling to
phonons for realistic parameters. Nevertheless, the phonons
drive the formation of small polarons for undoped cuprates,
due to the difference between phonons and magnons, in par-

ticular the different importance of vertex corrections.
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