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We derive sum rules for the phonon self-energy and the electron-phonon contribution to the
electron self-energy of the Holstein-Hubbard model in the limit of large Coulomb interaction U .
Their relevance for finite U is investigated using exact diagonalization and dynamical mean-field
theory. Based on these sum rules, we study the importance of vertex corrections to the electron-
phonon interaction in a diagrammatic approach. We show that they are crucial for a sum rule for
the electron self-energy in the undoped system while a sum rule related to the phonon self-energy
of doped systems is satisfied even if vertex corrections are neglected. We provide explicit results for
the vertex function of a two-site model.
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I. INTRODUCTION

Recently, there has been much interest in the pos-
sibility that electron-phonon interactions may play an
important role for properties of cuprates, e.g., for
superconductivity.1–3 In particular, the interest has fo-
cused on the idea that the Coulomb interaction U might
enhance effects of electron-phonon interactions, e.g., due
to interactions with spin fluctuations.4 Effects of the
electron-phonon coupling are described by the electron-
phonon part Σep of the electron self-energy Σ and the
phonon self-energy, Π. We have previously derived sum
rules for these quantities for the t-J model, and used the
sum rules to demonstrate that the electron-phonon in-
teraction influences Σep and Π in quite different ways for
strongly correlated systems.5 Here, we extend this work
and derive sum rules for the related half-filled Holstein-
Hubbard model in the limit of a large U . We obtain sum
rules for Σep integrating either over all frequencies or
only over frequencies in the photoemission energy range.
The latter sum rule shows a very strong dependence on
U , increasing by a factor of four in going from U = 0
to U = ∞. From numerical calculations, using both ex-
act diagonalization and dynamical mean-field theory, we
show that the U = ∞ result is also relevant for inter-
mediate values of U ≈ 3D, where D is half the band
width.

In a diagrammatic many-body language, the electron-
phonon interaction could be enhanced by U via cor-
rections to vertex functions6–9 or dressing of Green’s
functions.10 Huang et al.

7 and Koch and Zeyher8 studied
how U changes an effective vertex function in the static
limit (ω = 0) and found a suppression, although it was
concluded in Ref. 7 that the suppression is reduced for
a large U and a small wave vector q. Often, one is not
only interested in these special cases but in properties
that depend on integrals over ω and q containing ver-
tex functions. Here, we study to what extent the sum
rules above are fulfilled when vertex corrections are ne-
glected. We find that the sum rule for Σep, integrating
over the photoemission energy range, is underestimated
by a factor of four if vertex corrections are neglected. On

the other hand, a sum rule for the phonon self-energy is
fulfilled also without vertex corrections. This suggests
that it can be important to include vertex corrections for
studying properties of cuprates and other strongly corre-
lated materials.

The Hubbard model with electron-phonon interaction
is introduced in Sec. II. In Sec. III, sum rules for the
electron and phonon self-energies are derived focusing on
the limit U → ∞ and in Sec. IV we numerically check
their accuracy for large but finite U . These sum rules
then form the basis for the discussion of the effects of
vertex corrections in Sec. V. The results are illustrated
in Sec. VI for a two-site model.

II. HUBBARD MODEL IN THE LIMIT OF
LARGE U

Strongly correlated electrons are often described by the
Hubbard model

H = εd

∑

i,σ

niσ−t
∑

〈i,j〉,σ

(c†iσcjσ+H.c.)+U
∑

i

ni↑ni↓, (1)

where εd is the level energy, t(> 0) is the hopping integral
between nearest-neighbor sites 〈i, j〉, U is the Coulomb

repulsion between two electrons on the same site, c†iσ cre-

ates an electron on site i with spin σ, and niσ = c†iσciσ.
In addition, we introduce an electron-phonon interaction

Hep =
1√
N

∑

i,q

gq(ni − 1)(bq + b†−q)eiq·Ri , (2)

where N is the number of sites, ni = ni↑ + ni↓, and b†q
creates a phonon with the wave vector q and energy ωq

as described by the free phonon Hamiltonian

Hph =
∑

q

ωqb†qbq. (3)

We assume a q-dependent on-site coupling with the
strength gq. The coupling to hopping integrals is ne-
glected, which, e.g., has been found to be a good approx-
imation for the planar oxygen (half-)breathing mode in
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the high-Tc cuprates.11 The special case of a Holstein
coupling is obtained by setting gq = g and ωq = ωph for
all q.

To describe photoemission (PES) and inverse photoe-
mission (IPES) within the sudden approximation, we
consider the one-electron removal (-) and addition (+)
spectra

A−(k, ω) =
∑

mn

e−βEm

Z
|〈n|ckσ|m〉|2δ(ω+En−Em), (4)

A+(k, ω) =
∑

mn

e−βEm

Z
|〈n|c†kσ|m〉|2δ(ω+Em−En), (5)

where the energy ω is measured relative to the chemi-
cal potential µ, |m〉 and |n〉 are eigenstates of the grand
canonical Hamiltonian H = H−µ〈N〉 with eigenenergies
Em/n, Z =

∑

m exp(−βEm) is the corresponding parti-
tion sum, and β = 1/T . We assume that there is no
explicit dependence on the electron spin σ. From the
total spectral density

A(k, ω) = A−(k, ω) + A+(k, ω), (6)

we obtain the one-electron Green’s function

G(k, z) =

∫ ∞

−∞

dω
A(k, ω)

z − ω
(7)

which depends on the electronic wave vector k and the
complex energy z. It is related to the electron self-energy
Σ(k, z) via the Dyson equation

G(k, z) =
1

z − εk − Σ(k, z)
, (8)

where εk = εd− t
∑

〈i,j〉(e
ik(Ri−Rj) +H.c.)/N is the bare

electronic dispersion. We can split up G(k, z) into two
parts,

G(k, z) = G+(k, z) + G−(k, z), (9)

where the (I)PES Green’s functions G±(k, z) are defined
by replacing the spectral density in Eq. (7) by A±(k, ω).

We also define corresponding self-energies by

G±(k, z) =
a±
k

z − ε±k − Σ±(k, z)
, (10)

where a±
k is the integrated weight and ε±k absorbs energy-

independent contributions to the self-energy. We con-
sider the half-filled system and choose εd = −U/2 to
have explicit particle-hole symmetry. Then, as detailed
in the appendix, a±

k → 1/2, ε±k → ±U/2+εk for U → ∞.
In this limit, one finds from inserting Eqs. (8) and (10)
into Eq. (9) to leading order in 1/U

Im Σ(k, z ≈ ±U/2) = 2 Im Σ±(k, z ≈ ±U/2), (11)

relating the spectral densities of the different self-energies
for energies z ≈ ±U/2.

In the limit of large U , states with double occupancy
can be projected out. If certain terms are assumed to be
negligible,12 this leads to the t-J model13 as an effective
low-energy model for Eq. (1). Since double occupancy is
excluded in the t-J model, its electron Green’s function
has no contribution from inverse photoemission for the
undoped system, i.e., Gt-J(k, z) = G−

t-J(k, z). If we as-
sume that the photoemission spectra of the Hubbard and
the t-J model are identical (apart from a trivial energy
shift ≈ U/2), we obtain

G−(k, z) = Gt-J (k, z + U/2). (12)

The inverse photoemission in the half-filled Hubbard
model can be related to the photoemission in the un-
doped t-J model because of particle-hole symmetry,

G+(k, z) = Gt-J(kAF − k, U/2 − z) (13)

for a two-dimensional square lattice where kAF =
(π/a, π/a). Terms of order t ≪ U are neglected in the
energy shifts ±U/2 in Eqs. (12) and (13).

The electron self-energy in the t-J model is defined
via Gt-J(k, z) = 0.5/[ω − Σt-J(k, z)] and it follows from
Eqs. (10), (12), and (13) that

Σ−(k, z) = Σt-J(k, z + U/2), (14)

Σ+(k, z) = Σt-J(kAF − k, U/2 − z). (15)

In the following we derive sum rules for the electron
self-energy of the Hubbard model, and then use the ap-
proximate relations above to make contact to the t-J
model. Starting from a sum rule for the charge-charge re-
sponse function in the t-J model, we also obtain a corre-
sponding (approximate) sum rule for the Hubbard model
by using these relations.

III. SUM RULES

In this section, we discuss sum rules for the electron
and phonon self-energies. They will allow us to ad-
dress the importance of vertex corrections to the electron-
phonon interaction in a diagrammatic treatment of the
Hubbard model.

A. Electron self-energy

First, we consider a sum rule which gives the total
weight of the spectral density of the electron self-energy
Σ(k, z) integrated over all frequencies.

1

π

∫ ∞

−∞

dω Im Σσ(k, ω − i0+) = U2〈ni−σ〉 (1 − 〈ni−σ〉)

+2U

[

∑

q

gq√
N

〈(bq + b†−q)ρq−σ〉 − gq=0〈bi + b†i 〉〈ni−σ〉
]

+
1

N

∑

q

|gq|2〈|bq + b†−q|2〉 − g2
q=0〈bi + b†i 〉2, (16)
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where we defined ρqσ =
∑

i niσe−iqRi/
√

N and bi =
∑

q bqeiqRi/
√

N . σ is the electron spin for which the
self-energy is calculated but in our case the results do
not depend on it. The sum rule in Eq. (16) which is de-
rived in App. A 1 using spectral moments is valid for any
U and interestingly, it is independent of the electronic
wave vector k. For a Holstein coupling, it simplifies to

1

π

∫ ∞

−∞

dω Im Σσ(k, ω − i0+) = U2〈ni−σ〉 (1 − 〈ni−σ〉)

+2Ug〈(bi + b†i )ni−σ〉 + g2〈(bi + b†i )
2〉. (17)

In the derivation of Eqs. (16) and (17), we have assumed
translation invariance so the expectation values on the
right hand side of the equations do not depend on the
site i at which they are evaluated.

In the following, we focus on the half-filled system
where the mean occupation per site and spin 〈ni−σ〉 =
1/2 and consider the limit U → ∞. Because of the com-
plete suppression of double occupancies and the specific
form of the electron-phonon coupling in Eq. (2), there
are no phonons excited in the ground state and expecta-
tion values involving phonon operators in Eqs. (16) and

(17) greatly simplify, e.g., U〈(bi + b†i )ni−σ〉 → 0 and

〈(bi + b†i )
2〉 → 1. For the electron-phonon contribution

Σep(k, z) to the electron self-energy, i.e. the difference
between the self-energies for systems with and without
electron-phonon coupling, one then obtains the following
sum rule:

lim
U→∞

1

π

∫ ∞

−∞

dω Im Σep(k, ω − i0+) =
1

N

∑

q

|gq|2 ≡ g2.

(18)
In the special case of a Holstein coupling, g = g.

Besides this sum rule over all frequencies, we now want
to derive in addition partial sum rules where the integra-
tion runs only over a certain energy range. We start
from total sum rules for the electron-phonon contribu-
tions to the (I)PES self-energies Σ±(k, z) that can be
derived analogously as described in App. A 2.

lim
U→∞

1

π

∫ ∞

−∞

dω Im Σ±,ep(k, ω − i0+) = g2. (19)

Because of the relations in Eqs. (14) and (15), this result
corresponds to a sum rule for the t-J model which was
obtained in Ref. 5. As Eqs. (14) and (15) involve certain
assumptions needed to relate the undoped t-J model and
the half-filled Hubbard model in the limit of large U (see
discussion in Sec. II), a derivation of Eq. (19) from the
result in Ref. 5 would be only approximate. Our present
derivation, however, is entirely within the framework of
the Hubbard model and exact.

The spectral functions of Σ±(k, z) are non-zero only in
the energy range where the (I)PES spectra Im G±(k, ω−
i0+)/π are located, i.e., around ω ≈ ±U/2. With
Eq. (11), we can therefore derive from Eq. (19) also par-
tial sum rules for the electron-phonon contribution to the

−U/4 0 U/4
ω

Hubbard

g22g

g2

2g2

g2

2g2

/2 g2/2

/2/2

−3g2

no VC

t−J

non−int.

IPESPES

FIG. 1: Weights obtained by integrating Im Σep(k, ω−i0+)/π
over the indicated frequency intervals for the half-filled Hub-
bard and undoped t-J models. Also shown are the result for
the Hubbard model without vertex corrections (no VC) and
the lowest-order result for the Hubbard model with U = 0
(non-int.). For the t-J model, the photoemission spectrum
has been shifted by -U/2 and for the U = 0 Hubbard model
the photoemission and inverse photoemission spectra have
been shifted by -U/2 and U/2, respectively. The results for
U = 0 refer to the k-averaged self-energy.

full self-energy Σ(k, z) in the Hubbard model,

lim
U→∞

1

π

∫

(I)PES

dω Im Σep(k, ω − i0+) = 2g2, (20)

where we integrate over the (I)PES energy range around
ω ≈ ±U/2. An explicit choice in the limit of large U
would be, e.g., to integrate from −∞ to −U/4 (from U/4
to ∞) in order to fully include the energy range of the
PES (IPES) spectrum.

Together with Eq. (18), it follows from Eq. (20) that
the corresponding partial sum rule for integrating over
the central energy range ω ≈ 0 is given by

lim
U→∞

1

π

∫

ω≈0

dω Im Σep(k, ω − i0+) = −3g2. (21)

The negative value can be understood as follows. For
ḡ = 0, Im Σ(k, ω − i0+)/π has a pole in this energy
range with a large positive weight (≈ U2/4). When the
electron-phonon coupling is switched on, the strength of
this pole is slightly reduced which shows up as a pole with
a negative weight in the spectral function of Σep(k, z).

In summary, we have derived different sum rules for the
electron-phonon contribution to the electron self-energy
in the half-filled Hubbard model in the limit of large U .
A total sum rule (Eq. (18)) is complemented by three
partial sum rules that correspond to integrating over the
PES, IPES and central energy ranges (Eqs. (20) and
(21)). These sum rules and the corresponding one in the
t-J model are summarized schematically in Fig. 1. For
comparison, we also show the result for non-interacting
electrons (U = 0) to lowest order in g2. Integrating the
k-averaged Σep

non-int over the range of the photoemission
spectrum for a half-filled model gives the contribution
ḡ2/2, which is a factor of 4 smaller than what is ob-
tained in the large-U model (cf. Eq. (20)). Results for
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the large-U Hubbard model obtained by neglecting ver-
tex corrections (no VC) are also shown in Fig. 1 and will
be discussed in Sec. V.

B. Phonon self-energy

The phonon self-energy Π(q, z) can be expressed in
terms of the exact charge-charge response function χ̃(qz)
as

Π(q, z) =
(g2

q/N)χ̃(q, z)

1 + (g2
q/N)χ̃(q, z)D0(q, z)

, (22)

where D0(q, z) is the free phonon Green’s function. To
lowest order in gq, the denominator of Eq. (22) can be ne-
glected and χ̃(q, z) can be replaced by the exact charge-
charge response function χ(q, ω) for a system without
electron-phonon interaction. At T = 0,

χ(q, z) =
∑

ν

|〈ν|ρq|0〉|2
(

1

z − ων
− 1

z + ων

)

, (23)

where |ν〉 is an eigenstate of H with eigenenergy ων rel-
ative to the ground state energy and ρq =

∑

σ ρqσ is the
Fourier transform of ni. For U ≫ |t| and a half-filled sys-
tem, the ground state has exactly one electron per site to
lowest order in t/U . Applying ρq to the ground state |0〉,
it then follows that ρq|0〉 is zero to this order if we con-
sider q 6= 0. The sum rule for |Im χ(q, ω + i0+)|/(πN)
integrated over all frequencies is then also zero to lowest
order in t/U :

1

πN

∫ ∞

−∞

dω |Im χ(q 6= 0, ω + i0+)| = O(t/U). (24)

In the t-J model, an exact sum rule for the spectral
function of χ(q, z) has been derived:14

1

πN2

∑

q 6=0

∫ ∞

−∞

dω |Im χt-J (q, ω + i0+)| = 2δ(1− δ), (25)

where δ is the doping. We now assume that the pho-
toemission spectra of the large-U Hubbard and the t-J
model are identical. They extend over an energy range
which is equal or smaller than the width of the lower Hub-
bard band, ∆ = O(t) ≪ U . Then, Eq. (25) also leads
to a sum rule for χ(q, z) if the integration is limited to
|ω| ≤ 2∆ which excludes transitions from the lower to the
upper Hubbard bands not captured by the t-J model:

1

πN2

∑

q 6=0

∫ 2∆

−2∆

dω |Im χ(q, ω + i0+)| = 2δ(1 − δ). (26)

As discussed in Ref. 5, these results indicate a strong sup-
pression of the phonon self-energy in weakly doped sys-
tems with strong correlations because one would obtain
unity if non-interacting electrons (U = 0) were assumed
instead.

IV. NUMERICAL RESULTS AT FINITE U

The sum rules in Sec. III A for the electron-phonon
contribution to the electron self-energy have been derived
in the limit U → ∞. In practice, however, we are inter-
ested in strongly correlated systems with large but finite
U . In order to check the usefulness of the sum rules for
such cases we have performed numerical calculations us-
ing exact diagonalization (ED) and dynamical mean-field
theory (DMFT).

The ED calculations are done on a two-dimensional
tilted 10-site square cluster with periodic boundary con-
ditions. We consider a weak electron-phonon coupling
such that it suffices to include only states with at most
one phonon excited, thereby limiting the size of the
phonon Hilbert space. These exact results are only influ-
enced by finite size effects.

In addition, we also consider the thermodynamic limit
in the dynamical mean-field approximation,15 which also
allows us to consider larger electron-phonon couplings.
Most DMFT calculations only consider the paramag-
netic (P) phase.16 This approach neglects antiferromag-
netic (AF) correlations, which play an important role for
weakly doped systems with a large U . In particular,
AF correlations are essential for the interplay between
electron-phonon and Coulomb interactions. Thus it has
been found that AF-DMFT calculations predict only a
moderate suppression of the electron-phonon part of the
electronic self-energy due to the Coulomb repulsion,17

while P-DMFT calculations give a strong suppression.16

We therefore use the AF-DMFT method.
We consider a Bethe lattice with a semi-elliptical den-

sity of states (half bandwidth D). The self-consistent An-
derson impurity model, which appears in this approach,
is solved using exact diagonalization and a continued
fraction expansion18 We employ up to 14 discrete bath
levels and allow for up to 30 excited phonons. Specif-
ically, we study the undoped Hubbard-Holstein model
with D = 4t = 1 and ωph = 0.025D = 0.1t. In both
approaches, we first calculate the (I)PES spectral den-
sities A± which directly lead to the Green’s function G
using Eqs. (6) and (7). The inversion of the Dyson equa-
tion (Eq. (8)) then gives the self-energy Σ whose spectral
density we integrate over different energy ranges. Alter-
natively, the total sum rule can be obtained from calcu-
lating the ground state expectation values appearing in
Eq. (17).

We first consider a weak electron-phonon coupling cor-
responding to a dimensionless coupling constant λ =
g2/(ωphD) = g2/(ωph4t) = 0.0025. Using results from
both ED and DMFT calculations, Fig. 2 shows how much
the total spectral weight of the electron-phonon contri-
bution to the local (k-averaged) electron self-energy at fi-
nite U deviates from the sum rule for U → ∞ (Eq. (18)).
Relative to the latter, the deviation is less than 10% for
U as small as 3.5D, a value often considered appropriate
for the cuprates. This difference decreases like 1/U2 as
can be seen from Fig. 2, in agreement with expectations
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FIG. 2: Relative deviation of the total sum rule for the lo-
cal (k-averaged) Σep from its large-U limit (Eq. (18)) as a
function of U using ED and DMFT with λ = 0.0025.

3g2
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U/D
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FIG. 3: U dependence of total and partial sum rules for Σep

using DMFT with λ = 0.0025. The dotted lines indicate the
expected small-U behavior.

from a simple perturbational approach which we discuss
in more detail at the end of this section. We note that
results from ED and DMFT agree rather well. This con-
sistency indicates that the finite size effects of the former
and the approximations of the latter method are proba-
bly not strongly influencing the results discussed here.

The full U dependence of both total and partial sum
rules is illustrated in Fig. 3 using results from DMFT cal-
culations. Already for U larger than the non-interacting
bandwidth 2D, the sum rules clearly approach their re-
spective large-U limits (Eqs. (18), (20), and (21)). As
discussed at the end of Sec. III A, we expect for U → 0
that the total sum rule again approaches g2 with the
weight equally distributed over the PES and IPES en-
ergy ranges and no central contribution to the spectrum
of Σep at ω = 0. These trends are manifest in the calcu-
lated results.

Next, we study the dependence on the strength of the
electron-phonon coupling for fixed U = 5D. We restrict
ourselves to DMFT calculations where larger couplings

-4.2%

-3.8%

-3.4%

-3%

-2.6%

 0  0.2  0.4  0.6  0.8  1

λ

total: (∫−∞
∞  dω Im Σloc.

ep (ω-i0+)/π - g2)/g2

(I)PES: (∫(I)PES  dω Im Σloc.
ep (ω-i0+)/π - 2g2)/(2g2)

central: (∫ω≈0  dω Im Σloc.
ep (ω-i0+)/π + 3g2)/(-3g2)

PT

FIG. 4: Relative deviations of total and partial sum rules from
their large-U limits as a function of λ using DMFT for U =
5D. For the total sum rule, also results from perturbation
theory (PT) for a simplified model (see text) are shown.

are accessible because of the smaller phonon Hilbert
space compared to ED. In Fig. 4, we plot the λ depen-
dence of the relative deviations of total and partially inte-
grated spectral weights of the electron-phonon contribu-
tion to the local electron self-energy from their respective
sum rules for U → ∞ (Eqs. (18), (20), and (21)). For
both the (I)PES and the central sum rules, the relative
deviations are comparable in size to that of the total sum
rule (this similarity is also found when the U dependence
is considered) and are less than 10%. In all cases, the
deviations decrease linearly with λ. Again, for the to-
tal sum rule, the results can be quite well described by
a result from perturbation theory for a simplified model
which we introduce in the following.

We consider the self-consistent Anderson impurity
model to be solved in AF-DMFT of the Hubbard-
Holstein model and replace the bath by a single (but
spin-dependent) level. With the impurity level at −U/2,
the self-consistent bath level is located at ≈ ±U/2 de-
pending on the spin orientation; the hopping amplitude
between impurity and bath is fixed to V ≈ D/2. We treat
both this hybridization and the electron-phonon interac-
tion as perturbations of the atomic limit and find for
large U

〈(bi + b†i )ni−σ〉 = − 2V 2g

U2(U + ωph)
+ O(U−4) (27)

and

〈(bi + b†i )
2〉 = 1 +

4V 2g2/ωph

U(U + ωph)(U + 2ωph)
+ O(U−4).

(28)
Using these results in Eq. (17), we expect the total spec-
tral weight of the electron-phonon contribution to the
electron self-energy to be proportional to U−2 as was ob-
served in Fig. 2. Although we have replaced the bath by
a single level, the expressions in Eqs. (27) and (28) give
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k+qk

q

Γgq

FIG. 5: Diagrammatic representation of the vertex function
Γ(k, q), where k (q) stands for the incoming electron (phonon)
momentum and frequency. The full and dashed lines represent
electron and phonon Green’s functions, respectively.

a rather accurate description of the numerical results as
can be seen in Fig. (4).

In conclusion, we find that for typical values of U the
relative deviations from the sum rules derived for U → ∞
are smaller than 10%, and therefore these sum rules can
be used semi-quantitatively also for finite U .

V. EFFECTS OF VERTEX CORRECTIONS

We now use the sum rules introduced in Sec. III to
study the effects of vertex corrections in a diagrammatic
calculation of the electron and phonon self-energies. We
define the vertex function Γ(k, q) as the sum of all irre-
ducible vertex diagrams connecting two electron Green’s
functions with a phonon propagator taking out one cou-
pling constant gq explicitly (see Fig. 5). We use the 4-
vectors k and q as shorthand notation for the momenta
and frequencies involved.

A. Electron self-energy

An important lowest-order (in |gq|2) contribution to
the electron-phonon part of the electron self-energy is
shown in Fig. 6a, although there are also other, more
complicated lowest-order diagrams.19 The diagram in
Fig. 6a is

Σep(k, ω) = (29)

i

N

∑

q

|gq|2
∫

dω′

2π
G(k + q)D(q)Γ(k, q)Γ(k + q,−q),

where q stands for a wave vector q and a frequency ω′.
G and D are fully dressed electron and phonon Green’s
functions.

We now neglect the vertex corrections, i.e, we put
Γ = 1. After using Eq. (7) to express the electron Green’s
function in terms of its spectral function, the ω′ integral
can be performed. For the half-filled Hubbard model in
the large-U limit, the spectral function integrated over
the lower or the upper Hubbard band gives half an elec-

k+q

qa)

Γgq Γg−q

k+q

k

b)

Γ

FIG. 6: a) Lowest-order contribution (in |gq|
2) to the electron-

phonon part of the electron self-energy Σep and b) the charge-
charge response function χ. The full and dashed lines repre-
sent electron and phonon Green’s functions, respectively, and
the circles the vertex functions (gq)Γ.

tron per spin. As a result, we find

lim
U→∞

1

π

∫

(I)PES

dω Im Σep
no VC(k, ω − i0+) =

1

2
ḡ2, (30)

where we have also used that at half-filling, the phonon
Green’s function D(q) is not dressed in the large-U limit.
Comparing this result for the diagram in Fig. 6a with-
out vertex corrections (no VC) with the corresponding
exact sum rule, Eq. (20), shows that this approximation
underestimates the sum rule by a factor of four. This
result is schematically indicated in Fig. 1. When vertex
corrections are neglected, the diagram in Fig. 6 has no
contributions in the energy range ω ≈ 0.

We have elsewhere19 used the self-consistent Born ap-
proximation to study electron-phonon interaction in the
undoped t-J model which is closely related to the half-
filled Hubbard model in the large-U limit. In this ap-
proach, fairly good agreement with exact results is ob-
tained although vertex corrections are neglected. Al-
ready the lowest-order (in the electron-phonon coupling)
diagram for the electron-phonon contribution to the elec-
tron self-energy fulfills an exact sum rule for the total
spectral weight. The reason for this result contrasting
the strong violation of the sum rule in the large-U Hub-
bard model when vertex corrections are neglected can be
traced to the use of a Green’s function for spinless holons
in the self-consistent Born approximation. Its spectral
function integrates to unity over the photoemission en-
ergy range whereas the spin-dependent electron Green’s
function in the large-U Hubbard model has the spectral
weight one half in both the photoemission and the inverse
photoemission energy range.
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B. Phonon self-energy

For q 6= 0, the charge-charge response function,
χ(q, ω), for the Hubbard model can be obtained from
the diagram in Fig. 6b:

χ(q, ω) = −2i
∑

k

∫

dω′

2π
G(k+q)G(k)Γ(k+q,−q). (31)

We consider the large-U limit for a hole-doped Hubbard
model. The k-averaged photoemission spectrum for a
given spin integrates to (1 − δ)/2. As earlier, we use the
assumption that this spectrum agrees with the spectrum
of the t-J model and that it only extends over an energy
range ∆ ≪ U . In inverse photoemission, the probability
of adding an electron to an unoccupied site is δ. We
therefore assume that U is so large that the integral of
the inverse photoemission spectrum for a given spin up to
∆ is given by δ. We neglect vertex corrections and replace
Γ(p+q,−q) by unity. Introducing spectral functions, the
ω′ integration is performed. We consider the integral of
the spectrum of the charge-charge response function over
|ω| ≤ 2∆, thereby excluding transitions between the two
Hubbard bands. Then,

1

πN2

∑

q

∫ 2∆

−2∆

dω |Im χno VC(q, ω + i0+)|

=
2

N2

∑

q

∑

k

[wP(k)wIP(k + q) + wP(k + q)wIP(k)]

= 2δ(1 − δ), (32)

where wIP(k) is the integrated weight of the photoemis-
sion spectrum for the wave vector k and wIP(k) is the cor-
responding quantity for inverse photoemission, exclud-
ing the upper Hubbard band. For a large system, the
q = 0 term gives a negligible contribution in Eq. (32). It
then agrees with the sum rule in Eq. (26), derived from
the corresponding sum rule in the t-J model, although
vertex corrections have been neglected. It is important,
however, to use dressed Green’s functions in calculating
χ(q, ω). Otherwise, 2δ in Eq. (32) would have been re-
placed by (1 + δ), and there would have been a strong
disagreement with Eq. (26) in the low-doping regime.

The sum rule in Eq. (32) refers to an average over q.
We next study individual values of q for a t-J model on
a two-dimensional tilted 18-site square cluster with two
holes, periodic boundary conditions, and J/t = 0.3. We
have calculated wP(k) and wIP(k), using exact diagonal-
ization. From the second line of Eq. (32), we can obtain
sum rules for each q similar to Eq. (32). The result is
shown in the line “No VC” of Table I. The results are
compared with the sum rule for χt-J(q, z) calculated in
the t-J model (“Exact” in Table I). As can be seen from
the ratios of these results, the sum rule for individual
values of q that can be deduced from Eq. (32) is also
rather well fulfilled (typically, with a deviation of 5-10%)
although vertex corrections are neglected.

TABLE I: Sum rules equivalent to Eq. (32) but for individual
values of q, using ED of the t-J model on an 18-site cluster
with two holes and J/t = 0.3. The “No VC” results were
obtained from wP(k) and wIP(k), using the second line of
Eq. (32), and the exact ones result from the direct calculation
of χ. “Ratio” shows the ratio of these results.

q/π

3
(1, 1) (2, 0) (2, 2) (3, 1) (3, 3)

No VC 0.1848 0.1927 0.2103 0.2025 0.2285

Exact 0.2100 0.1961 0.2191 0.2085 0.2212

Ratio 0.8804 0.9825 0.9597 0.9714 1.0330

For the half-filled Hubbard model, there is no contri-
bution to Im χ(q, ω + i0+) for |ω| ≪ U . We therefore
focus on contributions for |ω| ≈ U . If |Imχno VC(q, ω +
i0+)|/(πN) is integrated over all frequencies, we obtain
unity. The exact result in Eq. (24), however, is zero to
lowest order in t/U . This dramatic disagreement shows
the importance of vertex corrections in this case.

VI. EXAMPLE: TWO-SITE MODEL

To study the vertex corrections more explicitly, we con-
sider a two-site Hubbard model. The electron-phonon
interaction in Eq. (2) can then be split in q = 0 and
q = π terms. The q = 0 term has just the rather triv-
ial but important effect of convoluting the spectra with
phonon satellites, while the q = π term introduces dy-
namics, scattering electrons between bonding and anti-
bonding orbitals. We therefore only keep the the more
interesting q = π term here.

Following Huang et al.,7 we can calculate the vertex
function explicitly for the two-site model in the limit of
U/t very large. We consider an incoming electron in the
bonding orbital (+) with the frequency ω scattered by
the antibonding (q = π) phonon with the frequency ω′

into the antibonding orbital (-) with the frequency ω+ω′

and obtain

Γ(ω, +; ω′) = Γ(ω + ω′,−;−ω′) (33)

=
ω(ω + ω′) + ω′t + U2/4

(ω + t)(ω + ω′ − t)
,

where various terms of higher order in t/U have been
neglected.

Using this result for the vertex function, we can cal-
culate the diagram in Fig. 6a according to Eq. (29). In
the limit of large U , we find poles with weight 2g2 both
at ω ≈ −U/2 and at ω ≈ U/2. Therefore, the sum rules
for integrating over either the PES or the IPES energy
range, Eq. (20), are exactly fulfilled. Without vertex cor-
rections, these sum rules are underestimated by a factor
of four, cf. Eq. (30). This can be understood by noting
that for electronic energies in the range of the lower or
upper Hubbard band, |ω| ≈ U/2, it follows from Eq. (33)
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that

Γ(|ω| ≈ U

2
, +; ω′) ≈ 2 (34)

when the phonon frequency ω′ is assumed to be small
compared to U . Therefore, including vertex corrections
effectively increases the weight of poles around |ω| ≈ U/2
by a factor Γ2 = 4. In addition, the self-energy calculated
using vertex corrections also has poles at ω = t−ωph and
ω = −t, the latter being a double pole. Except for a dif-
ferent sign, to leading order in U they give the same con-
tribution, ∓g2(U/2)2/(2t−ωph)

2, to the integral over the
spectral function of the self-energy. The sum of the two
contributions, however, is not zero, but one finds, taking
into account also terms which involve lower powers of U ,
that it equals −3g2 as expected from Eq. (21). There-
fore, also the sum rule over all frequencies in Eq. (18) is
fulfilled.

The sum rule for the charge-charge response func-
tion in Eq. (26) applies to finite dopings. For the two-
site model, this implies the uninteresting filling one, for
which there is no Coulomb interaction. It is interest-
ing, however, to study the sum rule over all frequencies
for the half-filled two-site model. As expected, we find
that the neglect of vertex corrections, incorrectly, gives
contributions at ω ≈ ±U with weight 1/2, respectively.
Only when the vertex function from Eq. (33) is used in
Eq. (31), χ(q = π, ω) vanishes to lowest order in t/U .
This is the correct result from Eq. (24).

VII. SUMMARY

We have derived exact sum rules for the electron-
phonon contribution Σep to the electron self-energy of the
half-filled Holstein-Hubbard model in the limit of large
U . In particular, we consider integrations both over all
frequencies and over frequencies in the photoemission en-
ergy range. Comparing results for U = ∞ and U = 0,
we find identical sum rules when integrating over all fre-
quencies but a difference by a factor of four when consid-
ering frequencies corresponding to photoemission only.
Using different numerical methods, we find that these
sum rules are relevant also for systems with intermediate
values of U ≈ 3D that are typically of interest. These
sum rules should be useful for testing approximate cal-
culational schemes.

We have also used sum rules for studying the impor-
tance of vertex corrections in a diagrammatic approach to
properties in the Hubbard-Holstein model. For a weakly
doped Hubbard-Holstein model in the large-U limit, the
phonon self-energy Π is strongly reduced compared to
the non-interacting case. This is described by a sum
rule which integrates Im Π over a finite frequency range
such that transitions between the Hubbard bands are not
involved. This sum rule is satisfied if properly dressed
Green’s functions are used to calculate the phonon self-
energy, even if vertex corrections are neglected. The en-
ergy dependence of Im Π(q, ω) could, nevertheless, be

substantially influenced by vertex corrections. For the
half-filled system, we have to integrate Im Π over all fre-
quencies to obtain a nontrivial sum rule. This sum rule
is only satisfied if vertex corrections are included.

The sum rule for Im Σep, integrating over frequencies
corresponding to photoemission only, is violated by a fac-
tor of four if vertex corrections are neglected. These re-
sults have been illustrated by an explicit calculation of
the vertex function in a two-site model. We have studied
integrated quantities where all values of |q| and ω enter,
both in terms of their relative ratio and their absolute
magnitude. Therefore, our findings cannot be directly
compared with previous ones which focused on the static
limit7,8 or on small |q| and ω.20 Our results show that
the inclusion of vertex corrections can be essential to cor-
rectly describe effects of electron-phonon interaction in
strongly correlated systems.
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APPENDIX A: DERIVATION OF SUM RULES
USING SPECTRAL MOMENTS

1. Total sum rule

To derive the sum rule for the total integrated weight of
the spectral density of the electron self-energy, Eq. (16),
we expand (z − ω)−1 in Eq. (7) in powers of 1/z. One
obtains

G(k, z) =

∞
∑

m=0

M
(m)
k

zm+1
, (A1)

where the moments of the spectral density are defined as

M
(m)
k =

∫ ∞

−∞

dω ωmA(k, ω). (A2)

On the other hand, using the Heisenberg equations of
motion for the time-dependent operators in the defini-
tion of the spectral density, these moments can also be
obtained from21

M
(m)
k = 〈{Lmckσ, c†kσ}〉, (A3)

with LO = [O, H ]. [O,O′] and {O,O′} denote the com-
mutator and the anticommutator of two operators O,O′,
respectively.

For the Hubbard model with electron-phonon interac-
tion which was defined in Eqs. (1)-(3), one obtains from
Eq. (A3)

M
(0)
k = 1, (A4)
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M
(1)
k = εk + U〈ni−σ〉 + gq=0〈bi + b†i 〉, (A5)

and

M
(2)
k = ε2

k + U2〈ni−σ〉 +
1

N

∑

q

|gq|2〈|bq + b†−q|2〉

+2εkU〈ni−σ〉 + 2εkgq=0〈bi + b†i 〉

+2U
1√
N

∑

q

gq〈(bq + b†−q)ρq−σ〉,

where εk, ρqσ, and bi have already been defined after
Eqs. (8) and (16).

When the 1/z expansion of the self-energy,

Σ(k, z) =

∞
∑

m=0

C
(m)
k

zm
, (A6)

is inserted into Eq. (8), a comparison with Eq. (A1) leads
to

C
(1)
k = M

(2)
k /M

(0)
k −

(

M
(1)
k /M

(0)
k

)2

. (A7)

As C
(1)
k corresponds to the zeroth moment of the spectral

density of Σ(k, z), we arrive at the sum rule, Eq. (16),
when Eqs. (A4)-(A6) are used in Eq. (A7).

2. Sum rules for (I)PES self-energies

The derivation of sum rules for the (I)PES self-energies
Σ±(k, z) can be done in full analogy with the previ-
ous section. Only the moments of the (I)PES spectra
A±(k, ω) are now obtained from22

M
+,(m)
k = 〈(Lmckσ)c†kσ〉, (A8)

M
−,(m)
k

= 〈c†
kσLmc

kσ〉 (A9)

instead of Eq. (A3). Because Eqs. (A8) and (A9) do not
contain an anticommutator, much more complicated re-
sults are obtained for these moments when applied to our

model from Eqs. (1)-(3). It turns out, however, that they
simplify considerably once the limit U → ∞ is taken. For
the zeroth moments which correspond to the integrated
spectral weights a±

k of the Green’s functions in Eq. (10),
one finds

M
+,(0)
k = a+

k = 1 − 〈nkσ〉 → 1

2
for U → ∞, (A10)

M
−,(0)
k = a−

k = 〈nkσ〉 → 1

2
for U → ∞, (A11)

where the large-U limit applies to the half-filled system
without spin polarization which is of interest for us here.
In this limit, one obtains the following first and second
moments:

M
+,(1)
k → (U + εd + εk)/2 for U → ∞, (A12)

M
−,(1)
k → (εd + εk)/2 for U → ∞ (A13)

and

M
+,(2)
k →((U + εd + εk)2 + g2)/2 for U → ∞, (A14)

M
−,(2)
k →((εd + εk)2 + g2)/2 for U → ∞. (A15)

where we used that double occupancy of sites and phonon
excitations are suppressed in the groundstate of the half-
filled system at large U . As in the previous section, these

moments can be related to the coefficients C
±,(m)
k in a

1/z expansion of the self-energies Σ±(k, z). At half-filling
and for εd = −U/2,

C
±,(0)
k =

M
±,(1)
k

M
±,(0)
k

= ε±k → εk±U/2 for U → ∞, (A16)

which gives the z-independent contributions ε±k to the
self-energies defined in Eq. (10). Using the analog to
Eq. (A7) and focusing on the electron-phonon contribu-
tion to the self-energies, one then arrives at the result in
Eq. (19).
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5 O. Rösch and O. Gunnarsson, Phys. Rev. Lett. 93, 237001

(2004).
6 M. L. Kulic and R. Zeyher, Phys. Rev. B 49, 4395 (1994);

R. Zeyher and M. L. Kulic, Phys. Rev. B 53, 2850 (1996);

M. L. Kulic and O. V. Dolgov, Phys. Rev. B 71, 092505
(2005).

7 Z. B. Huang, W. Hanke, E. Arrigoni, D. J. Scalapino, Phys.
Rev. B 68, 220507(R) (2003).

8 E. Koch and R. Zeyher, Phys. Rev. B 70, 094510 (2004).
9 E. Cappelluti, B. Cerruti, and L. Pietronero, Phys. Rev. B

69, 161101(R) (2004).
10 A. Ramsak, P. Horsch, and P. Fulde, Phys. Rev. B 46,

14305 (1992).
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