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We study the influence of the lattice structure, the Jahn-Teller effect, and the Hund’s rule coupling on
a metal-insulator transition in AnC60 �A � K, Rb�. The difference in the lattice structure favors A3C60

(fcc) being a metal and A4C60 (bct) being an insulator, and the coupling to Hg Jahn-Teller phonons
favors A4C60 being nonmagnetic. The coupling to Hg (Ag) phonons decreases (increases) the value Uc

of the Coulomb integral at which the metal-insulator transition occurs. There is an important partial
cancellation between the Jahn-Teller effect and the Hund’s rule coupling.

PACS numbers: 71.20.Tx, 71.10.Fd, 71.30.+h
The competition between the Coulomb repulsion, the
kinetic energy, the Jahn-Teller effect, and the Hund’s
rule coupling, leads to interesting physics. Examples are
perovskites, e.g., the manganites [1], and alkali-doped
fullerenes [2]. Here we focus on the metal-insulator
transition for an integer number of electrons per site. This
is particularly relevant for the fullerenes, since A3C60
�A � K, Rb� is a metal [3] while A4C60 is a nonmagnetic
insulator [4,5]. According to band theory both are metals
[6], and A4C60 must therefore be an insulator due to
interactions left out in band structure calculations.

The metal-insulator transition in a correlated system is
usually discussed in terms of the ratio U�W [7], where U
is the Coulomb interaction between two electrons on the
same molecule and W is the one-particle bandwidth W .
The ratio U�W is, however, almost identical for A3C60 and
A4C60 [2,6,8]. The question is then why not both systems
are either metals or insulators. To study this, we apply the
dynamical mean-field theory (DMFT), projection quantum
Monte Carlo (QMC) methods, and exact diagonalization
techniques to models of AnC60.

For the fullerenes it is believed that U�W � 1.5 2.5
[2]. In spite of this large ratio, these systems are close
to a metal-insulator transition due to the orbital degener-
acy N � 3 of the partly occupied t1u band [9,10]. The
lattice structure is fcc for A3C60 and bct for A4C60. The
important electron-phonon coupling is to Hg Jahn-Teller
phonons. We find that the difference in lattice structure
alone can explain why A3C60 is a metal but A4C60 is an
insulator and that the electron-phonon coupling can ex-
plain why A4C60 is nonmagnetic. We find an important
competition between the Jahn-Teller effect and the Hund’s
rule coupling. The Hg and Ag intramolecular phonons are
found to have the opposite effect on the critical Uc, for
which the metal-insulator transition occurs.

We consider a model of AnC60 which includes a three-
fold degenerate t1u level on each molecule and the hopping
between different molecules
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where c
y
ism creates an electron on molecule i with the

quantum number m and spin s. The hopping matrix ele-
ments tijmm0 [11] include the orientational disorder [12]
and the lattice structure, with nearest neighbor hopping
for the fcc structure and a weak second nearest neighbor
hopping for the bct structure [8]. The Coulomb interaction
is given by
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where Uxx and Uxy describe the interaction between equal
and unequal orbitals, respectively. K is an exchange inte-
gral and Uxx � Uxy 1 2K . Finally we include the inter-
action with a fivefold degenerate Hg phonon on each site
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where bin creates a phonon with the quantum number
n on the molecule i. The matrices V

�n�
mm0 are deter-

mined by symmetry [13]. The coupling constant g is
related to the dimensionless electron-phonon coupling
l � �5�3�N�0�g2�vph. We also consider the coupling to
Ag phonons, for which Vn

mm0 is diagonal in m and m0.
In a first step we analyze the effect of the lattice structure

alone, neglecting the electron-phonon coupling (g � 0)
and the multiplet effects (K � 0 and Uxx � Uxy � U).
We use a projection QMC T � 0 method in the fixed node
approximation [14], which gives quite accurate ground-
state results for this model [9]. A3C60 and A4C60 differ in
the number n of conduction electrons per site and in the
lattice structures. For a fcc lattice, n � 3 and n � 4 give
Mott transitions at almost the same Uc [15]. We therefore
focus on the difference in lattice structure, and consider
© 2000 The American Physical Society
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n � 4 for clusters with M molecules put on fcc or bct
lattices. The band gap for filling n is

Eg � E�nM 1 1� 1 E�nM 2 1� 2 2E�nM� , (3)

where E�N� is the energy of a system with N electrons.
We want to extrapolate to M ! ` and determine the Uc

for which Eg is zero. To reduce the finite size effects [9],
we add

Ẽg�U� � Eg�U� 2
U
M

2 Eg�U � 0� , (4)

where Eg�U � 0� is the band gap for U � 0. These
corrections go to zero for large M, but they improve the
extrapolation M ! `. Figure 1 shows that the metal-
insulator transition happens for a substantially smaller
U�W for the bct (Uc�W � 1.3) than for the fcc structure
(Uc�W � 2.3). The insulating state is antiferromagnetic.

To understand these results, we note that on the fcc lat-
tice it is possible to hop on a triangle, i.e., to return to the
original site after three hops. On a bct lattice, on the other
hand, this is not possible if the small second nearest neigh-
bor hopping integrals are neglected. The simplest systems
with these properties are a triangle and a square, each site
having a level with spin but no orbital degeneracy. A near-
est neighbor hopping integral t , 0 connects the orbitals.
The one-particle spectrum is 62t for the square and 22jtj
and t for the triangle. For the triangle there is a state with
maximum bonding character (22jtj), but it is not possible
to construct an optimally antibonding state, due to the
presence of frustration. Thus the one-particle bandwidths
are W � 3t and 4t for the triangle and the square, respec-
tively. The curves in Fig. 1 mainly differ in the large U
limit and we therefore consider this limit. We construct the
many-body states of the triangle with two, three, and four
electrons, which determine the band gap [Eq. (3)]. The
energy E�3� � O�t2�U�, since hopping is suppressed to
order t�U. For the case of four electrons, we construct
all states with the minimum (one) double occupancy and
Sz � 0. These states describe how the double occupancy
hops around the triangle. The original state is, however,
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FIG. 1. The energy gap Ẽg [Eq. (4)] as a function of U�W for
M � 32 molecules on fcc and bct lattices and the filling n � 4.
The lines are guides for the eye.
not recovered after one loop, since the spins on the sites
with a single occupancy have been flipped. Moving the
double occupancy around the triangle a second time re-
stores the spins and the original state is recovered after six
moves. The corresponding 6 3 6 matrix has the extreme
eigenvalues 62t. In the lowest many-body state of the
triangle with four electrons, it is therefore not possible to
restore the state in an odd number of hops, and the frus-
tration does not show up. In a similar way we obtain the
lowest energy 22t for the two-electron state. The square
has the same energies. Thus

Eg � U 2 4jtj � U 2
4
3

W for a triangle,

Eg � U 2 4jtj � U 2 W for a square.
(5)

Both the triangle and the square have no frustration in their
many-body states, and for fixed t the gaps are the same.
The one-particle bandwidth W , however, is reduced by the
frustration in the triangle, and expressing Eg in terms of
W requires a larger prefactor in the frustrated case. These
results give a qualitative explanation of Fig. 1.

Although the calculation above can explain why A4C60
is an insulator while A3C60 is a metal, it incorrectly pre-
dicts A4C60 to be antiferromagnetic. The calculation ne-
glects, however, the coupling to the Jahn-Teller phonons,
which tends to make A4C60 a nonmagnetic insulator [16].
The electron-phonon interaction has been estimated from
photoemission experiments for a free molecule [17]. We
describe the eight Hg phonons by an effective mode, with
the logarithmically averaged frequency vph � 0.089 eV,
and the effective coupling g � 0.089 eV. For a free mole-
cule this leads to a singlet being 0.29 eV below the low-
est triplet. This triplet-singlet splitting is larger than an
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FIG. 2. (a) The electron Green’s function G�t � b�2� as a
function of U�W for the filling n � 3 and different values of the
electron-phonon coupling l. The figures compare the couplings
to Ag and Hg phonons. (b) G�b�2� for coupling to Hg phonons
and n � 4. G�b�2� � 0 implies an insulator.
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TABLE I. The ground-state energy E�n� of an isolated mole-
cule for n electrons. The quantity n�n 2 1�Uxy�2 has been
subtracted. The results are symmetric around n � 3.

Ẽ�N� � E�N� 2 N�N 2 1�Uxy�2
n Low spin �K ,

3
2 EJT � High spin �K $

3
2 EJT �

1 2
5
2 EJT

2 210EJT 1 4K 2
5
2 EJT 2 K

3 2
15
2 EJT 1 2K 23K

experimental estimate of 0.1 eV for A4C60 [5]. The split-
ting is, however, reduced by the competition with the
Hund’s rule coupling. An estimate of the exchange inte-
gral K based on an ab initio self-consistent field calculation
[18] gave K � 0.11 eV [19]. This number is, however, ex-
pected to be reduced by correlation effects. For instance,
for atomic multiplets a reduction by 25% has been found
[20]. Indeed, we find that the experimental triplet-singlet
splitting is reproduced by using K � 0.07 eV.

Since the metal-insulator transition depends on a compe-
tition between the kinetic and Coulomb energies, and since
we may expect the electron-phonon coupling to reduce the
hopping, we may expect this to reduce Uc [21]. We there-
fore study the effect of phonons on Uc (for K � 0).

For this purpose we apply the DMFT [7]. We use hop-
ping integrals for a Bethe lattice in the infinite dimensional
limit timjm0 � t�dmm0�

p
z, where z ! ` is the connectiv-

ity. The impurity model, resulting in the DMFT, is solved
with a QMC method [22]. The phonon fields are treated
fully quantum mechanically, and they are updated together
with the Fermion auxiliary fields in each Monte Carlo
step [23]. We use the one-particle bandwidth W � 2, the
phonon frequency vph � 0.5, and a Trotter breakup
Dt � 1�3.

For an insulator G�t � b�2� decays exponentially with
b, where G�t� is the electron Green’s function on the
imaginary time axis. We therefore use G�b�2� to deter-
mine whether the system is a metal or an insulator.

We first compare the coupling to Ag and Hg phonons for
n � 3. Figure 2a shows that G�b�2� is reduced as U�W is
increased, since the system gets closer to a metal-insulator
transition. For l � 0 extrapolation suggests a rather large
1278
TABLE II. Eg�n� 2 Uxy 2 d3�n�t for a two-site model as a function of the filling n. The
hopping contribution to the gap is d�n�t, where d3�n� � 23, 25, and 26 for n � 1, 2, and
3, respectively. The coupling is to one Ag (A) or one Hg (H) phonon per site. The results are
symmetric around n � 3.

Eg�n� 2 Uxy 2 d3�n�t
Phonon n K #

3
2 EJT

3
2 EJT , K #

9
4 EJT K .

9
4 EJT

A 1 2EJT 2 K
A 2 2EJT 1 3K
A 3 2EJT 1 12K

H 1 5EJT 1
2
3 K 35

4 EJT 2 K

H 2 35EJT 2
46
3 K 5EJT 1

14
3 K

35
4 EJT 1 3K

H 3 55
2 EJT 2 8K 2

5
2 EJT 1 12K
Uc�W . For Hg phonons an increase in l leads to a rapid
reduction of G�b�2� and Uc, while for Ag phonons this
leads to an increase in G�b�2� and Uc.

To understand these results we study a free molecule
(Table I) and a system consisting of two molecules (dimer)
(Table II) in the limit

K �
g2

vph
� EJT ø vph ø W ø U . (6)

Table II shows the energy gap of the dimer. In agreement
with the full DMFT results (K � 0 and n � 3) the gap is
increased by a coupling to Hg but decreased by a coupling
to Ag phonons. We first consider the Ag case. Since
Vmm0 � dmm0Vmm we can transform the electron-phonon
coupling to the form

g
X

i

�ni 2 n� �bi 1 b
y
i � , (7)

where ni is the total occupation number operator for site i
and n is the (integer) filling. An irrelevant constant has
been neglected. We first study the state with 2n elec-
trons. In the limit W ø U hopping is suppressed, and
ni 2 n � 0. The coupling [Eq. (7)] is then negligible, and
the electron-phonon contribution to the energy is small. In
the case of an extra electron or hole, however, this addi-
tional charge can hop even for W ø U. The coupling
to the phonons then lowers the energy, and according to
Eq. (3) this reduces the gap.

For coupling to Hg phonons, the state with 2n electrons
can lower its energy via the (dynamic) Jahn-Teller effect.
Since hopping is very efficiently suppressed, the energy
gain is accurately given as twice the energy for a free mole-
cule (Table I). In the case of an extra electron or hole,
on the other hand, hopping dominates over the Jahn-Teller
effect in the limit (6). The system can then only take ad-
vantage of this effect to the extent that it does not inter-
fere with the hopping. The electron-phonon coupling then
gives a much smaller lowering of the energy than for the
state with 2n electrons, which increases the gap [Eq. (3)].

Figure 2b shows results for coupling to Hg phonons and
filling n � 4. Uc�W is smaller than for n � 3, although
the lattice structure is the same as for n � 3. This can be



VOLUME 84, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 7 FEBRUARY 2000
1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2 0.25

(U
xx

-~ E
g)

/W

λ

K/W=0.000
K/W=0.025
K/W=0.050
K/W=0.075

FIG. 3. The estimate Uxx 2 Ẽg of the critical Uxx as a function
of l � 4g2��vphW � for different values of K and Uxx�W � 3.

understood from Table I, which shows that the energy gain
in the free molecule due to the electron-phonon coupling is
larger for n � 4. This enters in E�nM�, while the electron-
phonon coupling plays a smaller role for E�nM 6 1�. The
electron-phonon coupling alone would then tend to favor
A4C60 being an insulator and A3C60 being a metal. As we
will see below, this effect is, however, partly canceled by
the Hund’s rule coupling.

The coupling to the Hg phonons pushes Uc for A3C60 to
the lower end of the physical range of U�W , raising some
questions of why not also A3C60 is an insulator. Although,
the Ag phonons tend to increase Uc, this should not be
important due to the weak coupling to the Ag phonons
[24]. However, there is a substantial coupling to a plasmon
in A3C60 [25]. This should tend to increase Uc, since it
couples to the electrons in the same way as the Ag phonons.
Below we show that the Hund’s rule coupling also plays
an important role in this context.

We next consider the effects of the Hund’s rule coupling
(K . 0). Since these terms in Eq. (2) lead to a sign prob-
lem in the DMFT QMC calculation, we use exact diagonal-
ization. To reduce the size of the Hilbert space we consider
a four-site system with twofold orbital and phonon degen-
eracies. The nearest neighbor hopping tim,jm0 � tijdmm0

is chosen randomly, thus reducing the degeneracy and the
one-particle spacing. We limit the size of the Hilbert space
by allowing a maximum of two phonons per site. Because
of this limitation, the calculation is not fully converged
for the larger coupling constants considered below. From
the finite size corrected band gap Ẽg�Uxx� we estimate the
critical Uxx as Uxx 2 Ẽg�Uxx�, shown in Fig. 3. The fig-
ure illustrates that for l � 0 an increase in K leads to a
decrease in Uc [10]. In analogy to the discussion for the
Jahn-Teller effect, the Hund’s rule coupling can effectively
lower the energy of the state with nM electrons while for
the states with nM 6 1 electrons, the stronger interference
with hopping leads to a smaller lowering of the energy. For
l . 0 the competition between the Jahn-Teller effect and
the Hund’s rule coupling tends to reduce the influence of
either effect on Uc. This is shown in Tables I and II and
in Fig. 3.

To summarize, we have found that the difference in lat-
tice structure favors A3C60 being a metal and A4C60 being
an insulator. The Jahn-Teller effect wins over the Hund’s
rule coupling, making A4C60 a nonmagnetic insulator. The
coupling to the Hg phonons tends to strongly reduce the
critical U for a metal-insulator transition, raising questions
about why not also A3C60 is an insulator. This effect is,
however, partially canceled by the Hund’s rule coupling.
The coupling to plasmons tends to further increase the
critical U.
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