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We study the interaction of electrons with phonons in strongly correlated solids, having high-Tc

cuprates in mind. Using sum-rules, we show that the apparent strength of this interaction strongly
depends on the property studied. If the solid has a small fraction (doping) δ of charge carriers,
the influence of the interaction on the phonon self-energy is reduced by a factor δ, while there
is no corresponding reduction of the coupling seen in the electron self-energy. This supports the
interpretation of recent photoemission experiments, assuming a strong coupling to phonons.

There has been much interest in electron-phonon
coupling in high-Tc cuprates after photoemission spec-
troscopy (PES) studies of Lanzara et al. [1] showed a
strong coupling to a mode at 70 meV. This was inter-
preted as a coupling to a half-breathing phonon, where O
atoms in the CuO2 plane move towards Cu atoms. This
interpretation is supported by the anomalous softening
under doping [2–5] and large width [3] of this phonon.
It is intriguing, however, that a substantially larger ap-
parent coupling strength λ was estimated from a kink
in the PES spectrum [1] than what is suggested from
the phonon width and softening [6]. Similar considera-
tions apply to the B1g phonon width [7] and the anomaly
at 40 meV seen in PES [8]. These estimates of λ were
based on theories which assume noninteracting electrons.
Using sum-rules, we show that for a strongly correlated
system the apparent λ deduced from such theories should
depend strongly on the property studied. We consider a
doped Mott (charge transfer) insulator, such as a cuprate,
which has a fraction δ carriers (where δ typically is small).
The influence of the electron-phonon interaction on the
phonon self-energy, determining its width and softening,
is then reduced by a factor of the order of δ compared to
a system without electron-electron interaction. For the
electron self-energy, determining the photoemission spec-
trum, there is no comparable reduction. This explains
why the λ deduced from the phonon self-energy appears
smaller than the one deduced from PES, and it supports
the scenario that phonons give a large contribution to
structures in PES. For similar reasons, there should be
no reduction ∼ δ in the phonon induced carrier-carrier
interaction. To address these issues, we present a method
for determining λ in exact diagonalization approaches.

The electron-electron interaction can strongly reduce
the effects of the electron-phonon interaction on phonons
[9]. The electron density is rearranged in response to the
excitation of a phonon, and this rearrangement acts back
on the phonon, contributing to the width and energy shift
of the phonon. The response of the electrons depends on
electron hopping, which is hindered by interaction effects.
In particular, if the interaction is strong enough to lead
to a Mott insulator (for δ = 0), the electron-phonon con-
tribution to the phonon width vanishes.

For cuprates, this can be studied in the t-J model [10],

which has one site per Cu atom. Each site is occupied by
either a Cu 3d-hole or a Zhang-Rice singlet, composed
of a Cu 3d-hole and an O 2p-hole. The doping δ gives
the fraction of singlets, which provide the charge carriers.
The Hamiltonian is given by

Ht-J = J
∑

<i,j>

(

Si · Sj −
ninj

4

)

− t
∑

<i,j>σ

(c̃†iσ c̃jσ + H.c.), (1)

where c̃†iσ creates a d-hole on site i if this site previously
had no hole. A hole can hop with the hopping integral
t to sites occupied by singlets and vice versa. The spins
of the 3d-holes have a Heisenberg interaction with the
interaction strength J . In the t-J model with phonons
[11–16], the phonons couple mainly to the on-site energies
and only weakly to the terms describing hopping and
spin-spin interaction [11, 15]. In the following we only
include the coupling to the on-site term,

Hep =
1√
N

∑

i,q

gq(ni − 1)(bq + b†−q)eiq·Ri , (2)

where N is the number of sites, gq is a coupling constant,
ni measures the d-hole occupation on the site at Ri and
bq annihilates a phonon with a wave vector q.

The phonons only couple to sites with Zhang-Rice sin-
glets, i.e., sites with no d-holes. The phonon self-energy
Π(q, ω) can then be expressed in terms of the charge-
charge response function χ(q, ω).

Π(q, ω) =
(g2

q/N)χ(q, ω)

1 + (g2
q/N)χ(q, ω)D0(q, ω)

, (3)

where D0(q, ω) is the free phonon Green’s function.
Khaliullin and Horsch [12] showed that there is a sum-
rule

1

πN

∑

q6=0

∫ ∞

−∞

|Imχ(q, ω)|dω = 2δ(1 − δ)N, (4)

This result is a factor 2δ(1− δ) times the result for non-
interacting electrons in a half-filled band. Since χ(q, ω)
becomes small for small δ, the same is true for Π(q, ω).
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In this limit the denominator in Eq. (3) is not very im-
portant, and the sum-rule in Eq. (4) also applies approx-
imately to Π(q, ω)/g2

q

1

πN

∑

q6=0

1

g2
q

∫ ∞

−∞

|ImΠ(q, ω)|dω ≈ 2δ(1 − δ), (5)

To understand the result in Eqs. (4, 5), we notice that
the system can respond to the perturbation of a phonon
by transferring singlets to sites with Cu 3d-holes. If there
are few singlets, i.e., δ is small, the response of the sys-
tem is weak and the phonon self-energy is small. Since
typically δ ∼ 0.1, this drastically reduces the phonon
softening and width. We observe that this is a direct
effect of the strong correlation and the assumption that
double occupancy can be neglected.

It is interesting to study PES and inverse PES (IPES)
to see if many-body effects also drastically change the ef-
fects of the electron-phonon interaction in these cases.
These spectra are described by the spectral function
A(k, ω) = ImG(k, ω − i0+)/π, where k is a momentum
and ω a frequency. G(k, z) is the electron Green’s func-
tion

G(k, z) =
ak

z − εk − Σ(k, z)
, (6)

where ak is a weight, z is a complex number and Σ(k, z)
is the electron self-energy. The z-independent part of Σ
is included in the energy εk, so that Σ(k, z) ∼ bk/z for
large z. To determine bk, we expand the Green’s function
in 1/z

G(k, z) =
ak

z
(1 +

εk

z
+

ε2
k + bk
z2

+ ..) (7)

=
ak

z
(1 +

〈ω〉k
z

+
〈ω2〉k

z2
+ ..),

where 〈ωn〉k =
∫

ωnA(k, ω)dω/
∫

A(k, ω)dω. The coef-
ficient bk can then be expressed in terms of 〈ω〉k and
〈ω2〉k. Using the analytical properties, we can relate bk
to a sum-rule over Im Σ(k, ω − i0+). Since there are no
phonons in the ground-state in the model (2) for δ = 0,
we can easily calculate expectation values of powers of
Hep, needed to obtain 〈ωn〉k. From this we deduce a
sum-rule for the difference Σep between the self-energies
with and without electron-phonon interaction.

1

π

∫ 0

−∞

ImΣep(k, ω − i0+)dω =
1

N

∑

q

|gq|2 ≡ ḡ2, (8)

which is valid for δ = 0. The integration only runs over
energies corresponding to the PES spectrum, since the
weight of the IPES spectrum is zero for δ = 0. The same
result is obtained for the absolute value of the lowest or-
der (in g2

q) self-energy of noninteracting electrons. While
the effect of the electron-phonon coupling is strongly re-
duced by the small doping for the phonon self-energy,

there is no such reduction for the electron self-energy.
Re Σep is related to Im Σep via a Hilbert transform.

The sum-rule in Eq. (8) can be understood if we no-
tice that a singlet with the wave vector k, created in PES,
can easily be scattered by phonons to other states k + q,
since only a fraction (1−δ) of these are occupied by other
singlets. We therefore expect a strong electron-phonon
interaction in PES also for a finite but small δ. As a
result, one would then expect that the electron-phonon
interaction appears to be a factor of 1/(cδ) stronger in
Re Σ(q, ω) than for the phonon width 2 Im Π(q, ω),
where c ∼ 2 − 4 depends on the assumptions about the
ω-dependencies of Im Σ and Im Π. Although the argu-
ments above show that the right hand side of the sum-
rule in Eq. (8) should not go to 0 for δ → 0, the result
is, nevertheless, highly nontrivial. The right hand side is
independent of k, t and J . It is also interesting that it
remains proportional to ḡ2 for large ḡ.

From these arguments it follows that the phonon in-
duced attractive carrier-carrier interaction should also
be effective, since for small δ the carriers (singlets) can
scatter each other via phonons with few restrictions.
This may be helpful for superconductivity. In partic-
ular, it should be possible to have a strong phonon in-
duced carrier-carrier interaction, without the correspond-
ing phonon going soft.

To illustrate these points, we study the t-J model with
phonons, using exact diagonalization. We consider a fi-
nite cluster with 4×3 sites, and include the entire breath-
ing phonon branch. The Hilbert space is limited by only
allowing for states which have a maximum of K phonons,
where typically K = 7. Ideally, we would calculate the
PES spectrum as a function of k. We would then ex-
pect to see a kink in the dispersion at energies of the
order of ωph away from the Fermi energy, where ωph is a
typical phonon energy. For the small clusters which can
be studied in exact diagonalization, this approach is not
possible, due to the few k-points available.

Instead we focus directly on the self-energy. The spec-
tral function A(k, ω) is calculated using exact diagonal-
ization. The Green’s function is then obtained from a
Kramers-Kronig transformation. Finally, Σ(k, ω) is ob-
tained by inverting Eq. (6). In a similar way we deter-
mine Π(q, ω) from the phonon spectral function. The ω-
dependence of Re Σ(q, ω) then gives information about
the kink in PES and Im Π(q, ωph) gives the phonon
width.

Due to the small size of the cluster there are few many-
electron states in the phonon energy range, which makes
it hard to extract phonon widths, even in the approach
above. The main points of the paper can, however, also
be illustrated by using a larger phonon energy. We have
therefore increased the bare phonon energy to ω0

ph = 0.5
eV. This requires a corresponding increase in the cou-
pling constant. We have chosen a multiplying factor
of 3.4, which leads to an apparent coupling strength to
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FIG. 1: Frequency integrals over the imaginary parts of the
phonon self-energy for q = π/a(1, 0) and the electron-phonon
contribution to the k-averaged electron self-energy. The re-
sults are divided by the coupling constants and they were
obtained for a 4 × 3 cluster with periodic boundary condi-
tions. Π was calculated for δ = 1/12 and Σep for δ = 0. The
self-energies were given a 0.2 eV (FWHM) Lorentzian broad-
ening. The figure illustrates how these quantities converge to
approximately 2δ ≈ 0.17 [Eq. (5)] and unity [Eq. (8)] for the
phonon and electron self-energy, respectively.

the phonons of the order seen experimentally [17]. We
have furthermore used the parameters t = 0.47 eV and
J/t = 0.3.

Figure 1 shows the frequency integrals of the imaginary
parts of the electron and phonon self-energies as a func-
tion of the upper limit ω. The limit ω → ∞ corresponds
to the sum-rules (4) and (8). To obtain dimensionless
quantities, the coupling constants have been divided out.
The figure illustrates the large ratio, ∼ 1/(2δ), of the
sum-rules. The sum-rule in Eq. (4) applies to an aver-
age over q 6= 0 of χ, but we found that it is also rather
accurate for Π/g2

q for an individual value of q, as is illus-
trated in Fig. 1. The reason is that the denominator in
Eq. (3) is not very important for the coupling strengths
used here and that the sum-rule for an individual q is
not very different from the average over q.

The coupling strength λ is often determined from the
phonon width γ = 2 Im Π(q, ωph) [18] or its softening,
∆ωph = Re Π(q, ωph), using

λΠ =
γ

2πω2
phN(0)

= −α
∆ωph

ω0
ph

, (9)

appropriate for noninteracting electrons. Here N(0) is
the electron density of states per spin and α ∼ 1 depends
on the precise ω dependence of Im Π(q, ω). Figure 2
shows the broadened Im Π(q, ω). The broadening (0.4 eV
FWHM) was chosen in such a way that the fine structures
due to the finite cluster size were removed and so that
the expected behavior Im Π(q, ω) ∼ ω for small ω was
obtained. The phonon is softened to ωph = 0.4 eV, due
to the electron-phonon interaction. For this frequency we
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FIG. 2: Im Π(q, ω) of a 4×3 cluster for q = π/a(1, 0) and δ =
1/12. The self-energy has been given a Lorentzian broadening
of 0.4 eV.

obtain the FWHM of the phonon as γ = 0.08 eV. This re-
sult depends on the broadening of Im Π(q, ω) and results
differing by ±30% could be obtained for other reasonable
broadenings. Based on the width of Im Π(q, ω), we esti-
mate N(0) ∼ 0.5 states per eV and spin and λΠ = 0.2.
From the phonon softening ∆ωph/ω0

ph = 0.2, we obtain

a similar result for λΠ.
We emphasize the difference in this approach, using a

broadened Π, from an approach where the phonon spec-
tral function is broadened until a smooth spectrum is ob-
tained. The latter approach leads to an additional width
of the peaks. For the present system, such a large broad-
ening would be required that the approach would not be
meaningful. The broadening of Im Π(q, ω), on the other
hand, does not generally add to the width of the phonon
spectral function, since it essentially only distributes the
contributions to Im Π(q, ω) more uniformly in ω.

We next consider the coupling strength seen in the
electron self-energy determining PES. We can determine
a λΣ as

λΣ = − dReΣep(ω)

dω

∣

∣

∣

∣

ω=0

=
1

π

∫

dω
ImΣep(ω)

ω2
. (10)

This leads to λΣ = 0.6, which is about a factor of 1/(cδ)
larger than λΠ with c = 4. As can be seen from Fig. 1
Im Σ is small for |ω| < ωph = 0.4 eV. For this frequency
range we find that Re Σ(k, ω) ∼ −λΣω.

To summarize, we have found that in strongly corre-
lated systems the apparent strength λ of the electron-
phonon coupling crucially depends on the property of
interest. For the t-J model of a high-Tc cuprate with a
fraction δ carriers, sum-rules for the imaginary parts of
the electron and phonon self-energies show a reduction
by a factor δ for the phonon but not the electron case.
This suggests that the apparent λ deduced from phonon
widths and softenings is reduced by such a factor, while
there is no reduction in the electron self-energy. This pro-
vides support for phonons being essential for kinks seen
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in photoemission. Similar arguments suggest that the
phonon induced interaction between the carriers is not
reduced by a factor of δ, which may be of importance for
superconductivity.
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