
Developer’s guide to NECI

Contents
1 Working in NECI 3

1.1 Code conventions . 3
1.2 Comments and documentation . 11
1.3 Review guidelines . 13
1.4 Don’t Repeat Yourself (DRY) . 14

1.4.1 Procedure pointers (function pointers) . 15
1.5 Don’t optimise prematurely . 15
1.6 Let the compiler help you . 16

1.6.1 Using CTAGS with VIM . 16
1.7 Tracking memory usage . 17
1.8 Code templating . 17

1.8.1 How it works . 18
1.8.2 Overall structure . 18
1.8.3 Configuration names and substitution . 19
1.8.4 Variable substitution . 19
1.8.5 The supermodule . 20
1.8.6 Optional parameters and lines of code . 20
1.8.7 Manual renaming of routines . 21
1.8.8 Examples . 21

1.9 Testing . 21
1.9.1 Adding a new test . 22
1.9.2 Unit tests . 23

1.10 Interfacing C (and C++) code . 23
1.11 Debugging tips . 24

1.11.1 Build configurations . 24
1.11.2 ASSERT statements are your friend . 25
1.11.3 Learn to use your tools . 25
1.11.4 Machete Debugging . 26
1.11.5 fcimcdebug 5 . 26
1.11.6 Look at the git logs . 26

2 Guide to specific code in NECI 27
2.1 Important modules and common (global) variable names 27

2.1.1 Inexplicable names and anachronisms . 27
2.2 Parallelism . 27

2.2.1 Usage . 28
2.2.2 Important variables . 28
2.2.3 Implementation . 29

2.3 Shared memory . 29
2.3.1 How to use shared memory provisions . 29
2.3.2 Quirks and limitations . 30
2.3.3 How it works . 31

2.4 Integral retrieval . 32
2.4.1 FCIDUMP files . 32

1

2.4.2 Generation on the fly . 33
2.4.3 Nested schemes . 33
2.4.4 Fixed Lz and complex orbitals . 34
2.4.5 Further schemes . 34

2.5 Hamiltonian matrix element evaluation . 34
2.5.1 Different ways to obtain Matrix elements 34

2.6 Excitation generation . 36
2.6.1 Interface . 36
2.6.2 Symmetry handling . 37
2.6.3 Manipulating determinants, and bit representations 38
2.6.4 Data storage . 38
2.6.5 Re-use and rescaling of random numbers . 39
2.6.6 Timestep selection and other control parameters 40
2.6.7 Testing excitation generators . 40
2.6.8 How this interacts with HPHF functions . 41
2.6.9 The uniform selection excitation generator . 41
2.6.10 The weighted excitation generator . 42

2.7 Determinant data storage . 43
2.7.1 Transmitted data . 43
2.7.2 Locally stored data . 44

2.8 Transcorrelated integrals . 44

3 Index Conventions 45

2

1 Working in NECI

In many ways, NECI is a fairly hostile environment to code, especially for inexperienced soft-
ware developers, or those who are not familiar with the ideosynchrasies of different versions of
FORTRAN/Fortran.

In the following sections we aim to give some general guidance for working in the NECI codebase,
and

NOTE
As a general guideline, programs should be written to fail as loudly and as early as possible.
This pushes the job of finding errors and debugging up the tree.

1. Just “looks wrong” to the programmer.
2. Syntax highlighting in the editor makes a mistake stand out.
3. Error detected by compiler.
4. Error detected by linker.
5. Runtime error detected by debug sanity checks through code.
6. Runtime error caused in code at a different location to the bug.
7. Runtime error only occurs when running in parallel, or in bigger calculations.
8. Simulation appears to run correctly, but gives obviously wrong output.
9. Simulation appears to run correctly, but gives subtly wrong output.

We strongly aim to be at the top of the list.

1.1 Code conventions

The code in NECI has been developed over a number of years by many different developers, and
has very little standardisation of approach or code appearance. This is not an example to copy!

We are trying to (gradually) normalise sections of code, and isolate those sections which are old and
generally unredemable from the rest of the code base. As such there are a number of restrictions
we place on code in NECI, and a range of other guidelines.

Fortran standard
Due to the use of procedure pointers, a reasonably up to date compiler supporting (at least some
of) the Fortran 2003 standard is required to compile NECI. The C-interoperability and procedure
pointer features of Fortran 2003 should be used. Other features of this standard should be used
sparingly, as Fortran 2003 support in compilers is patchy at best.

Otherwise, code should be written to the Fortran 90/95 standard. In particular, several features of
FORTRAN 77 should be avoided at all costs:

DO statements using REAL type loop variables.

Assigned GOTO statements

Cray pointers (declared with the format pointer (ptr, pointee))

Implicit variables. implicit none MUST appear in every module, or interface statement.

Implicitly typed routines and subroutines. See section on modules and interfaces.

COMMON blocks for sharing data between files.

All of these features do, or have appeared, in NECI at some point. It is also highly advised that
intent arguments should be used for all argument declarations. This both improves performance,
and the ability of others to quickly identify what the routine is attempting to do.

Regarding code layout, the PEP8 guidelines of the python language lead to well readable code and
are mostly applicable to Fortran as well. (https://www.python.org/dev/peps/pep-0008/)

3

https://www.python.org/dev/peps/pep-0008/

CAPITAL letters
Fortran is a case insensitive programming language.

For historical reasons a large proportion of FORTRAN 77 code was written entirely in CAPITAL
LETTERS (with the exception of displayable strings). This is extremely bad practice.

Humans generally read by recognising word shape. This is obliterated in fully capitalised text,
making code much harder to read, and typos especially difficult to identify.

Indentation
Indentation of sections of code should use spaces (and not tabs). The Fortran 95 standard explicitly
rejects the use of tabs, and tabs in source code will elicit warnings from the compiler.

All indentations should be multiples of 4 characters.

Source code in .F files (old-style FORTRAN 77) has specific layout restrictions. In particular an
initial indent of 7 spaces. This style should not be mimicked elsewhere.

Code line length
The Fortran 90/95 standard restricts line lengths to a (hard) maximum of 132 characters. Code
with lines longer than this may work on some compilers, but this limit should be avoided.

This limit applies after preprocessing has been applied. A number of our macros in macros.h can
create lines of considerably longer length if not used carefully. These may require using temporary
variables with shorter names to control the line length.

The fixed-format FORTRAN 77 code is restricted to 72 characters per line.

On a 19" monitor at standard resolution, two columns of code vertically split and side by side use
79 characters each. This is a convenient soft-limit to use - although it is not trivially achievable in
all code, and overall readability should be prioritised.

Variable name conventions
There are a number of competing conventions for variable and function names within NECI. That
said, there are a number of existing conventions that it is useful to be aware of and which new code
should keep in mind.

CamelCase or snake_case should be used to provide descriptive variable names. Prefer snake_case when
reasonable. The wider the scope of a variable, the longer and more descriptive the name should be.
Trivial local variables (loop indices, etc.) can and should be trivially named. Variables should not,
ever, be used entirely in capital letters.

tVariableName is a logical control variable. Normally globally declared in a module for switching on
(or off) an overall feature, or signalling overall calculation state.

TypeName_t is a user-defined type.

nVariableName is an integer containing a count of a number of a given entity.

Variable, AllVariable are paired sets of variables tracking an extensive property of a simulation.
That is properties which can be accumulated on an individual node, but that the system-relevant
property needs to be collected from all nodes and amalgamated. This is done once per iteration or
once per update cycle as appropriate.

CamelCase_t CamelCase and a trailing t denote a derived type.

Fortran 95 restricts variable names to 31 characters. Although Fortran 2003 extends this to 63,
making use of this extension can cause problems with some compilers, and this should be avoided.

Subroutine decoration (especially intent statements)
Subroutine and function declarations should be decorated to the greatest extent feasible. This
should restrict the variables to only their expected role in a function.

4

In particular, all function arguments should be decorated with either intent(in), intent(out), or
intent(inout) as appropriate. When absolutely necessary, use value to pass arguments by-value. The
additional decorations optional and target can be used with care.

The supplied arguments should be as restrictive as possible, to maximise the likelihood of the
compiler catching programming errors.

The single exception to this rule is for routines that are to be stored in procedure pointers. These
routines must exactly match the definition of the relevant abstract interface, which may be more
general than is required for the specific case.

The arguments should be sorted by non optional in, inout, out and then optional arguments. The
declaration of dummy arguments should appear in the same order as the argument list. There
should be an empty line between dummy argument declarations and local variable declarations.

If a procedure is often, but not always, called with the same argument think about making it
optional using the def_default macro and introduce a placeholder local variable with appended
underscore.

If possible add the pure attribute. This shows the human that there are no side effects and makes
parallelization and encapsulation easier.

If a function is pure and operates on scalars, add the elemental attribute to automatically map it
elementwise onto arrays.

The following toy function is pure, can be applied onto arrays and scalars alike. If the exponent is
ommited, it defaults to squaring.
elemental function pow(x, n) result (res)

integer , intent (in) :: x
integer , intent (in), optional :: n
integer :: n_

integer :: i

def_default (n_ , n, 2)

res = 1
do i = 1, n_

res = res * x
end do

end function

pow ([1 , 3, 5]) -> [1, 9, 25]
pow ([1 , 3, 5], 3) -> [1, 27, 125]

Data types
With the exception of small integers being directly assigned to known integer variables, or used in
loop counters, all constants should have their types explicitly specified. The available types are
described in section 2.1.

Most specifically, the *D* specifier and the floating point type double precision should never be used.
Examples such as 1.D0 should be replaced with 1.0_dp, and the data types real(dp) and complex(dp)
should be used.

As compilers have moved between 16-bit, 32-bit and 64-bit, there is ambiguity about whether
double precision should mean a 32-bit, 64-bit or 128-bit floating point value, depending on the age
of the compiler and which compiler is used. This can cause chaos and difficult to track runtime
bugs that appear only on certain machines.

For Hamiltonian matrix elements (that may be real or complex depending on build configuration)
the custom (preprocessor defined) data type HElement_t should be used, which resolves to either
real(dp) or complex(dp).

Array declarations
Fortran arrays can be declared in multiple ways. In particular, the dimensionality of an array can
be declared on the variable itself, or as part of the type declaration;

5

integer , dimension (10 , 20) :: arr1
integer :: arr2 (10 , 20)

In general the latter declaration is preferred for two reasons:

1. It is clear that the array property is attached to the variable, and not to the type. When
scanning data declarations it is not possible to mistake a scalar for an array.

2. Multiple different arrays can be declared in the same data declaration with different bounds.

The only exception to this is in templated code, where the bounds of arrays need to be varied.

Where arrays are passed as arguments to a routine, they can be passed in three ways
integer , intent (inout) :: arr (*)
integer , intent (inout) :: arr (10)
integer , intent (inout) :: arr (:)

The first form should be avoided wherever practical, as it prevents any knowledge of the array
dimensions being carried into the code. This means that whole-array manipulations will no longer
work.

The second two types can be used in different circumstances. The first essentially overrides the
array dimensions passed in. This can be useful for re-indexing arrays (e.g. treating a zero-based
array as one-based).

The last approach allows a receiving routine to inspect the array bounds as passed in by the calling
routine. This maximises the extent to which the compiler and debugging tools can assist in finding
errors in the code, and should be used wherever possible.

use statements
Globally declared symbols can be shared between modules using use statements. Generally,
specific symbols should be included rather than all symbols in a module using the notation
use module_name, only: symbol,

Modules containing only data that have been separated for the purposes of dependency resolution
can be fully included into their related modules (e.g. CalcData and Calc).

Use statements should (where possible) be located in the module header, and not in individual
subroutines - this avoids some serious issues associated with compilers resolving conflicting de-
pendencies. If the same thing is included in multiple places in a file, the compilers dependency
resolution tree can become very large, and use a lot of time and memory to resolve unambiguously.

ASSERT statements
ASSERT is a macro, defined in macros.h. In an optimised build these statements are entirely removed,
and in a debug build they will cause execution to be aborted with an error message if the condition
specified is not met.

In NECI, the error message contains the current file and line number. It also includes the current
function, which must be manually supplied in a constant named this_routine.

An example assert statement, in a function that takes an array with the same number of elements
as there are basis functions, would be:
subroutine foo(arr)

integer , intent (inout) :: arr (:)
character (*) , parameter :: this_routine = 'foo '
ASSERT (size(arr) == nBasis)
...

end subroutine

WARNING
Be careful not to use tests with side effects in ASSERT statements. In the optimised build the
tests will not be called, and this can introduce bugs that appear in only one of the optimised
or debug builds.

6

Floating point comparison and integer division

It is usually a bad idea to test floating point numbers for (in-)equality using == or /=. Equality
should rather be tested with an expression like |a−b| < ε. In the util_mod module there are near_zero
and operator(.isclose.) which should be used for this purpose.

If one divides two integers 5 / 3 == 1 the result gets truncated to the nearest integer. Sometimes
this is not wanted, and the compiler warns about it. For this reason one should use 5 .div. 3 to
make it explicit that integer division is indeed wanted.

Tools for adhering to the style guide

WARNING
It is better to write nice code from the beginning on instead of relying on automated tools.
This section is meant for existing code, that has no consistent indentation and other flaws.

One recommended program to prettify Fortran free-format code is fprettify. It can be installed
with pip3 install fprettify and is automatically installed on the Alavi workstations. The --user
option might be required for installation if you do not have sudo-rights.

The NECI codebase already contains the correct configuration files, so it is sufficient to just call
fprettify on a file in src/ or src/lib.

Operator Layout
The following guidelines are recommendations for formatting of code and represent the configuration
of the fprettify tool explained in the previous paragraph. These binary operators should be
surrounded with a single space on either side: assignment (=), comparisons (==, <, >, /=, <=, >=),
Booleans (.and., .or., .not.).

If operators with different priorities are used, consider adding whitespace around the operators with
the lowest priority(ies) to make the expression readable easily. Use your own judgment; however,
never use more than one space, and always have the same amount of whitespace on both sides of a
binary operator.
! Recommended

i = i + 1
x = x*2 - 1
hypot2 = x*x + y*y
c = (a+b) * (a-b)

! Also possible
x = x * 2 - 1
hypot2 = x * x + y * y
c = (a + b) * (a - b)

! Not recommended
i=i+1

Line breaks should happen before binary operators for easy association of operator and operand
! Not recommended : operators sit far away from their operands

income = gross_wages + &
taxable_interest + &
(dividends - qualified_dividends) - &
ira_deduction - &
student_loan_interest

! Recommended : easy to match operators with operands
income = gross_wages &

+ taxable_interest &
+ (dividends - qualified_dividends) &
- ira_deduction &
- student_loan_interest

Please use the new C-style relational operators.
! Recommended

== /= < <= > >=

7

! Not recommended
.EQ. .NE. .LT. .LE. .GT. .GE.

Whitespace in Expressions
Avoid extraneous whitespace in the following situations.
! No whitespace immediately inside parentheses :

Yes: spam(ham (1) , f(eggs , 2))
No: spam(ham(1), f(eggs , 2))

! No whitespace immediately before the open parenthesis that starts
! the argument list of a function call or array indexing :

Yes: spam (1)
No: spam (1)

! No whitespace immediately before a comma , semicolon , or colon :
! Yes:

use module , only: cool_function
integer , allocatable :: A(:, :)
integer , allocatable :: A(: ,:)

! No:
use module , only : cool_function
integer , allocatable :: A(: , :)

! No whitespace around the = sign when used to
! call a function with a keyword argument .

! Yes:
pow (2, n=3)

! No:
pow (2, n = 3)

In a slice the colon acts like a binary operator, and should have equal amounts on either side
(treating it as the operator with the lowest priority). In an extended slice, both colons must have
the same amount of spacing applied. Exception: when a slice parameter is omitted, the space is
omitted.
! Recommended

ham (1:9) , ham (1:9:3) , ham (:9:3) , ham (1::3) , ham (1:9:)
ham(lower : upper), ham(lower : upper :), ham(lower :: step)
ham(lower + offset : upper + offset)
ham (: upper_fn (x) : step_fn (x)), ham (:: step_fn (x))
ham(lower + offset : upper + offset)

! Not recommended
ham(lower + offset : upper + offset)
ham (1: 9), ham (1 :9) , ham (1:9 :3)
ham(lower : : upper)
ham(: upper)

Contained procedures
From Fortran2003 onwards it is possible to define procedures inside procedures. The inner procedure
has access to the local scope of the outher procedure. (Similar to closures in other languages.)
These contained procedures allow to cleanly eliminate some reasons, why one would like to use a
global variable. Besides it also leads to less wrapper functions that are similar, but not the same.
This can be used both to avoid code duplication and to avoid passing unnecessary arguments.

Let’s assume there is a fancy_function with ten arguments. One of them is a real, intent(in) :: x. If
fancy_function is called several times with only a varying x there are many lines of code doing more
or less the same. In former versions of Fortran this usually lead to the introduction of a wrapper
function my_fancy_function that depends explicitly only on x and gets the nine other arguments using
global variables that have to be defined before calling my_fancy_function.

Another code that uses fancy_function keeps x constant, but varies another argument y. This leads to
a second wrapper my_fancy_function_2 and more global variables. In addition both wrapper function
might be used only at one place.

If one instead defines the wrapper function as internal procedure only where it is used there is no
need for a wrapper function. This resembles the process of currying in functional languages.
function calculate_something (a) result (res)

real , intent (in) :: a
real :: res

! arg2 to arg10 are visible identifiers here

res = exp(f(a)) + 3

8

contains

function f(x) result (res)
real , intent (in) :: x
real :: res

res = fancy_function (x, arg2 , arg3 , ... , arg10)
end function

end function

Another use case for contained procedures is to extract recurrent parts of a subroutine/function
without exposing them to module scope.

A contained procedure cannot make use of the contains statement.

Modules and interfaces
It is an aim to make the dependency between different code parts as small, as unidirectional and as
explicit as possible. Module are a great tool to achieve that goal.

A good example are the different excitation generators of NECI. It is possible to seamlessly exchange
different excitation generators because they all have the same public interface. On the other hand
they greatly differ in their implementation details and each excitation generator uses different helper
functions. It is possible to use an excitation generator without knowing about the implementation
details and helper functions. It is even advised to not rely on or assume any implementation detail
for a specific excitation generator.

There are some rule of thumbs to achieve similar results in the architecture of other code. If one
is implementing a new module it is good to start with the private keyword to make all identifiers
private to that module and explicitly thinking about which identifiers should be accessable from
outside and declare them public. These public identifiers should only change for a good reason
afterwards and should be well documented. Variables that should have read-only access from the
outside (a computed energy for example) can be declared public, protected.

If other modules are imported with use, only: then it is easy to see on which code a module relies.

If there are generic functions it is possible to declare only the name of the generic interface as public
and keep the concrete implementations private.

The use of private helper functions has the same benefit as contained procedures. It allows to write
ad-hoc wrappers that have access to the module scope, but do not require public global variables.

If possible functions should be declared pure or elemental.

Example module layout
A sample module layout is given below:
include " macros .h" ! This enables use of our precompiler macros .
module module_name

! To the extent possible , include statements should be at the
! beginning of a module , and not elsewhere .
! If possible they should import only actually used identifiers .
use SystemData , only: nel , tHPHF
use module_data
use constants
implicit none

! To the extent possible , declare all identifiers of
! a module as private by default
! and export explicitly with the public keyword .
private
public :: sub_name , fn_name , calculated_energy
! Cannot be changed from the outside .
protected :: calculated_energy

real(dp) :: calculated_energy

! Add an interface to an external (non - modularised) function
interface external_fn

9

function splat_it (in_val) result (ret_val) &
bind(c, name='symbol_name ')

! n.b. interface statements shield from modular includes
import :: dp
implicit none
integer , intent (in) :: in_val
real(dp) :: ret_val

end function
end interface

contains

[pure| elemental] subroutine sub_name (in_val , out_val)

! This is a description of what the subroutine does

integer , intent (in) :: in_val
real(dp), intent (out) :: out_val

end subroutine [sub_name]

[pure| elemental] function fn_name (in_val) result (ret_val)

! This is a description of what the function does

integer , intent (in) :: in_val
real(dp) :: ret_val

end function [fn_name]

end module

Error handling

It is very important to always be in a well defined state and to be deterministic up to the stochastic
noise of the Monte-Carlo simulation. For this reason, errors that cannot be handled inside a
procedure and are not handled by calling code should crash the program. This philosophy follows
the convention of the fortran intrinsic allocate or the mpi_f08 subroutines. The error code should be
optional and calling code should only pass it, if they handle all possible error cases. The called
function should not abort the calculation, if an error code is present and should abort the calculation
if this is not the case.

Calling code should only ask for the error code if the return value is handled as early as possible.
Do not write
allocate (A, stat=ierr)
allocate (B, stat=ierr)
allocate (C, stat=ierr)
if (ierr /= 0) call stop_all (...)

but either check after each allocation (to know which array failed) or just ommit stat=ierr. The
intrinsic allocations stops the program if it cannot allocate.

One line if statements

One-line if statements should fit in one line. If they have to be continued via &, please use a proper
then . . . end if pairing.
! This is allowed
if (cond) statement

! This is forbidden
if (cond) &

statement

The underlying reason is that the danger is too high, to go from
if (cond) &

statement_1

to

10

if (cond) &
statement_1
statement_2

where people might overlook that statement_2 is always executed.

1.2 Comments and documentation

Comments

Comments should not explain what the code does, but why.
! Not recommended

! increment i
i = i + 1

Code should be written to require as least comments as possible. This is for example achieved by
using self explaining variable names
! Not recommended

! n is the number of spatial orbitals
n = ...

! Recommended
n_spat_orbs = ...

and encoding assumptions in the type system.
! Not recommended

elemental real function get_area (r)
real , intent (in) :: r

!! r encodes the radius of a circle .
get_area = PI * r**2

end function

! Recommended

elemental real function get_area (circle)
type(Circle_t), intent (in) :: circle
get_area = PI * circle %r**2

end function

Documentation
The documentation of NECI is automatically generated from the code using ford.

From its documentation we copy the most relevant part.

In modern (post 1990) Fortran, comments are indicated by an exclamation mark (!). FORD
will ignore a normal comment like this. However, comments with two exclamation marks (!!) or
exclamation mark and greater sign (!>) are interpreted as documentation and will be captured for
inclusion in the output.

Documentating with !! is preferred and comes after whatever you are documenting.
subroutine feed_pets (cats , dogs , food , angry)

!! Feeds your cats and dogs , if enough food is available .
!!
!! If not enough food is available , some of your pets will get angry .
integer , intent (in) :: cats

!! The number of cats to keep track of.
integer , intent (in) :: dogs

!! The number of dogs to keep track of.
real , intent (inout) :: food

!! The ammount of pet food (in kilograms) which you have on hand.
integer , intent (out) :: angry

!! The number of pets angry because they weren 't fed.

!...
end subroutine feed_pets

To keep compatibility to existing documentation in the Doxygen format is possible to use !> to
document before whatever you are documenting.

11

https://github.com/Fortran-FOSS-Programmers/ford

!> Feeds your cats and dogs , if enough food is available .
!>
!> If not enough food is available , some of your pets will get angry .
subroutine feed_pets (cats , dogs , food , angry)

!> The number of cats to keep track of.
integer , intent (in) :: cats
!> The number of dogs to keep track of.
integer , intent (in) :: dogs
!> The ammount of pet food (in kilograms) which you have on hand.
real , intent (inout) :: food
!> The number of pets angry because they weren 't fed.
integer , intent (out) :: angry

!...
end subroutine feed_pets

Note that unlike Doxygen intent, allocatable, target etc. attributes are automatically parsed by
ford and shall not be specified in the documentation redundantly.

Ford has some useful notes you may recognise from using Doxygen, like

NOTE
notes

WARNING
warning tags

TODO
todo tags

BUG
bug tags

Git overview

It is essential if you plan to do developmental work to get familiar with the source-code management
software ‘git’. The code will get unusable exponentially quickly if all development and new ideas
are hacked into the master branch of the code. The nature of research is that most things probably
won’t work, but you want to implement them and test relatively quickly, without requiring a
standard of code that will remain usable in perpetuity. To avoid an inexorable increase in code
‘clutter’, it is essential to work in ‘branches’ off the main code. For a more detailed introduction to
the git package, see git-scm.com/book/en/v2/getting-started-git-basics. In short, the workflow
should be:

1. Branch off a clean master version to implement something

2. Test and develop in the branch

3. Regularly merge the new code from the master branch into your personal development branch

4. Once satisfied with the development, and that it is an improvement in scope or efficiency of
the existing code, ensure it is tidy, commented, documented, as bug-free as possible, and tests
added to the test suite for it. This may involve reimplementing it from a clean version of
master if it can be done more efficiently

5. Merge code back into master branch

A few potentially useful git commands in roughly the workflow described above:

• git branch
See what branch I am on. -a flag for all (inc. remote) branches.

12

git-scm.com/book/en/v2/getting-started-git-basics

• git pull origin master
Update the master branch into the current local repository

• git checkout -b newbranchname
Fork off current branch to a new branch called ‘newbranchname’

• git commit -a -m ‘Commit message’
Commit a set of changes for the current branch to your local repository.

• git push origin branchname
Push your current local branch called branchname to a new remote branch of the same name
to allow access to others and secure storage of the work

• git checkout -b newbranchname –track origin/remotebranch
Check out a branch stored on the remote repository, and allow pushing and pulling from the
remote repository for that branch.

• git push
Push the current branch to the remote branch that it is tracking.

• git merge master
Merge the recent changes in master into your local branch (requires a pull first)

• git checkout master
Switch branches to the master branch

• git merge newbranch
Merge your code in ‘newbranch’ into your current branch (potentially master)

Each commit should contain one logical idea and the commit message should clearly describe
everything that is done in that commit. It is fine for one commit to only contain a very minor
change. Try and commit regularly and avoid large commits. It is also a good idea to make sure
that code compiles before commiting. This helps catch errors that you may be introducing and
also allows the use of debugging tools such as git bisect.

It should be noted that the ‘stable’ branch of the code, automatically merged into from master
upon successful completion of nightly tests, is hosted on github on a public repository, and also
pushed to the molpro source code. The molpro developers will quickly send us angry emails if poor
code gets pushed into it from NECI, and I will be sure to forward complaints onto the relevant
parties!

1.3 Review guidelines

Any new code which is to be added to the master branch of NECI has to undergo code review
to check if it does not introduce new bugs into existing code and if the code is written in an
understandable and maintanable way, and following the code conventions introduced in section 1.1.

The process of adding new code to the program contains these steps

1. Create a new git branch and add your code there. Do not forget to add tests, so the
functionality can be verified.

2. Push the branch to the bitbucket repository

3. Create a pull request to master/devel (depending on where you want the code merged),
selecting a set of reviewers.

4. The pull request triggers a pipeline that tries to compile the program and run a set of tests
with the new code. If any of those fail, you will get a notification and you can check the
reason therefore.

5. The reviewers will now check the code and can comment on it. Make sure to address these
comments.

13

6. Once you got the approval of at least one reviewer, you can merge the code. It is now included
in the program.

If you have been selected as a reviewer and decide to do the review, check the pull request. It will
contain information on the ran tests and a list of all changes to the code. Go through the new
code and check if it is written in a clean and well-commented way, in accordance with the code
conventions. Does it have tests? You do not have to verify that the new code is bug-free nor do you
need to debug it, that is not within the scope of the review. If you find something that could be
improved, make a comment on that or create a task, this helps the author to increase the quality of
the code.

1.4 Don’t Repeat Yourself (DRY)

When information becomes duplication in software, eventually the people that knew about the
duplication will forget. And then the information will be changed — but at least one of the
duplicates won’t be. This introduces bugs that are extremely difficult to track down.

The Don’t Repeat Yourself (DRY) principle is one that say a developer should systematically, and
always, avoid duplication of information.

NECI is a terrible example of this, but it has been improved over time with a lot of effort.

Information is a very broad term. There are many types of duplication that can occur. A non
exhaustive list of some types of duplication (and what can be done about them) follows.

• Algorithm duplication across data types
There are many algorithms that are either the same, or similar, across many different data
types. The logic involved in these should be written once.

Major examples are the sorting routines in sort_mod, general utilities in util_mod, shared
memory in shared_alloc and MPI routines in Parallel_neci. Prior to implementing a generalised
quicksort there were 37 different sort routines in NECI, using different sort methods, and
containing different bugs.

This duplication should be controlled using templating, as described in section 1.7.

• Logic duplication across source files
If the same chain of decision making is recurring in different regions of the code, these should
be abstracted into their own subroutine which is called from each location. This prevents the
logic being duplicated, and then diverging.

Numerous bad examples of this still persist in NECI.

• Duplication of data
Compile time constants should only be specified in one place. A large proportion of these
are found in the lib/cons_neci.F90 source file. Other examples include the layout of the bit
representations (BitReps.F90). A significant proportion of these vary depending on the compile
configuration, and prior to collecting them here the code was extremely fragile.

Ongoing cases which are problematic include the use of the literal constant 6 to specify output
to stdout in statements such as write(6,*), which doesn’t interact well with molpro.

• Duplication of representations in memory
It is important to have a well defined canonical representation of data in memory. The same
data should not be allowed to become duplicated in multiple places.

Temporary arrays, with working data copied into them, should be clearly temporary and
discarded as soon as not necessary. If the primary data shifts to a new location, the old
storage should be deallocated (if possible), or damaged so that attempts to use it fail loudly
(such as putting a value of −1 into a variable that would normally hold an index).

Avoid situations where code might work by accident.

14

An ongoing situation of this type is the array variable nBasisMax. It shadowed a large number
of global control variables, and there are still locations in the code where its value is used in
preference to the global control value as these values diverge, and its value is the one that
works in some obsolete code.

There is one, major, exception to this rule. Code that only exists for testing purposes (such as
the contents of ASSERT statements, or unit tests) may be as explicitly duplicated as desired. Their
purpose is to explicitly flag up when anything elsewhere changes - so the risk of them getting out of
sync with the code base is their purpose.

1.4.1 Procedure pointers (function pointers)

One issue that becomes immediately obvious when repeated logic has been abstracted into specific
functions is that conditional logic is executed every time certain actions are taken.

In many cases this is not very important, as it occurs high up the call hierarchy, and the controlled
code consumes the vast majority of the execution time. However, the closer we get to the inner most
tight loops, the more expensive repeated conditional logic becomes. This is particularly frustrating
if the decision making is based on global control parameters, and thus always results in the same
code path being taken in a simulation. If the decision lies against the branch prediction metrics,
then this is especially bad.

The canonical example of this is accessing the 4-index integrals, which is performed very frequently.

In these case, it is a good idea to separate the decision making logic from the execution, so that the
conditional logic is only executed at runtime. This can be done using procedure pointers (called
function pointers, or similarly functors in other programming languages.

These require defining the “shape” of a function call (i.e. its arguments, and return values) in an
abstract interface. A variable can then be set to point at which of a range of functions with this
signature should be executed.

In NECI the global controlling procedure pointers are located in the module procedure_pointer,
which contains both the abstract interface definitions, and the actual pointer variables. These
variables can then be used as functions throughout the code.

These procedure pointers are largely initialised in the routine init_fcimc_fn_pointers, where decisions
are made between types of excitation generator, matrix element evaluation, etc. The procedure
pointers involved in integral evaluation are set in init_getumatel_fn_pointers.

The use of procedure pointers generates a strict Fortran 2003 dependency for NECI. We used to
make use of a hacky abuse of the linker and templating system to implement function pointers
without language support, but this was deprecated once compiler support for procedure pointers
was reasonably widespread.

1.5 Don’t optimise prematurely

Obviously, good algorithm design is important. If an algorithm scales badly, then no implementation
will be able to salvage it.

However, there are many tricks and optimisation that can be made to eek out small and large
performance gains in the implementation of a particular algorithm. It is important not to optimise
too early for a number of reasons.

• Good optimisation is extremely time intensive. On the whole time is better spent getting the
code to work, and making the algorithm efficient. Once an implementation works, then code
can be profiled and performance improved.

• Optimisations are often highly non-obvious, involving storing information in unexpected ways
and places, leading to code that is hard to write, harder to read and extremely bug prone.

15

• The compiler is very good. The obvious ‘tricks’ that you see will be done by the compiler
anyway.

• One place where performance gains can legitimately be made is in avoiding conditional
switching. In many cases this would involve duplicating code paths, and horrifically breaking
the DRY principle above. There are occasions that this is worthwhile, but this should be
actively justified by profiling data rather than just a hunch.

1.6 Let the compiler help you

If real NECI is compiled in debug mode, warnings will be treated as errors. This means that code
with real numbers may not produce any warnings to be merged into main development branches.
The complex version of the code however, does not treat warnings as errors.

Unfortunately the warnings for unused variables had to be deactivated, because there are too many
incidents.

WARNING
There are too many conversion warnings in the complex NECI code that could not be
cleaned up yet and probably lead to serious bugs. It is necessary to clean them first before
complex NECI can be used reliably.

Sometimes a warning is a false-positive. To work around such problems there is a WARNING_WORKAROUND_
compile flag that gets activated, if warnings are activated.

A common false-positive warning is an unused variable that has to stay in the code, because it is
e.g. in the interface of a function that is the target of a function pointer. For this case the unused
macro exists. It is not necessary to put this macro behind the WARNING_WORKAROUND_ compile flag. It is
recommended to mark unused variables directly after declaration to make it explicit to the human
reader.
include " macros .h"
integer , intent (in) :: arr1 (:) , n
real(dp), inten (in) :: arr2 (:, :)
integer :: ierr

unused (arr2); unused (n)

1.6.1 Using CTAGS with VIM

It is useful, especially for new developers, to be able to easily navigate through NECI code. A simple
solution for Vim users is to generate a tags file containing the names of all functions and global
variables and their locations. Vim automatically reads this file from the current directory, if it exists,
and use it to facilitate code navigation. Then you can jump to the deceleration of a variable or a
function by putting the cursor over it and pressing Ctrl+] . To go back, press Ctrl+t. Other tag-related
commands are explained here: https://vim.fandom.com/wiki/Browsing_programs_with_tags.

To generate the tags file, a program called ctags is needed. It is installed by default in many
Linux distributions, but this version is most probably the one called ctags (GNU Emacs) and does not
support the options we need. The required version is Exuberant Ctags or its derivative Universal Ctags
which you can be downloaded from here: https://github.com/universal-ctags/ctags.

Once you installed the correct version and made sure it is the default one, [ˆctags] go to the source
directory of NECI and run the script gen_vim_tags.sh which is available in the tools directory
cd neci/src
../ tools / gen_vim_tags .sh

This script does some tricks using the preprocessor to solve issues with handling macros in NECI
files. Without these, ctags would miss many variables due to parsing issues. The script generates

16

https://vim.fandom.com/wiki/Browsing_programs_with_tags
https://github.com/universal-ctags/ctags

the necessary tags file in the current directory and code navigation should become available for all
source files in this directory.

1.6.1.0.1 Note tags is simply a text file with the symbol’s name, the file where its defined, and
the line number . There is no automatic magic happening behind the scenes as one would expect
from a full-fledged IDE. Therefore, whenever the code changes, you need to explicitly re-generate
the tags file. Otherwise, Vim will simply jump to the old positions of the symbols.

1.6.1.0.2 Tip Another useful tool is Tagbar plugin for Vim which lists all functions/variables in
the current file in a side window. Using this plugin does not require the tags file, because it generates
its own tags on-the-fly. However, you will need to install an updated version of ctags executable. All
necessary details are explained on the plugin’s homepage: https://github.com/majutsushi/tagbar

1.6.1.0.3 EMACS Usage Like Vim, Emacs accepts TAGS file (notice the capital letters). This
file can similarly be generated using gen_emacs_tags.sh, then you can use Meta+. to jump to definition
and Meta+* to go back. Other tag-related commands are explained here: https://www.emacswiki.
org/emacs/EmacsTags.

1.7 Tracking memory usage

NECI contains automated tracking of memory usage. This enables output statistics to indicate
which memory uses are dominating during a calculation.

The MemoryManager module keeps track of all units of memory, and assigns a tag value to each of
them. It is the responsibility of the developer to store this tag, and pass it when the memory is
deallocated. This tag is an integer.

Memory should always be allocated using error checking. That is, an allocate statement should
always be passed an error value as follows
integer , allocatable :: arr1 (:)
real(dp), allocatable :: arr2 (: ,:)
integer :: ierr
allocate (arr1 (10) , arr2 (20 , 30) , stat=ierr)

This value will be zero if the allocation was successful, and non-zero otherwise. The memory logging
routines check this value, and report an error if the memory allocation failed.

Memory is logged using the functions LogMemAlloc and LogMemDealloc.

1.8 Code templating

NECI supports two ways of templating code, the python-based Fortran preprocessor fypp (https:
//github.com/aradi/fypp) and the custom script tools/f90_template.py. It is strongly suggested for
new code to make use of fypp, which allows for handling preprocessor flags using python syntax,
and provides an easy route to templating code with little effort. All files named *.fpp have the fypp
preprocessor applied. An in-depth documentation can be found at https://fypp.readthedocs.io/en/
stable/.

As fypp support is a recent addition, most of NECI’s templates are contained in *.F90.template files,
which are automatically converted by tools/f90_template.py into files with the corresponding names
*.F90 prior to running the C preprocessor.

This mechanism exists to allow general code to be written, and reused for different types, and
combinations of types. While this is largely a combinatorial pattern-matching and substitution
problem, the templater contains specific additional features to facilitate dealing with array types in
Fortran. There are also a number of specific considerations that need to be made.

17

https://github.com/majutsushi/tagbar
https://www.emacswiki.org/emacs/EmacsTags
https://www.emacswiki.org/emacs/EmacsTags
https://github.com/aradi/fypp
https://github.com/aradi/fypp
https://fypp.readthedocs.io/en/stable/
https://fypp.readthedocs.io/en/stable/

The templated code in NECI has been written largely by Simon Smart and Alex Thom, who should
be able to help with any particularly nasty issues arising.

1.8.1 How it works

Fortran permits multiple routines to be referenced by the same name through the use of interface
blocks such as
interface sub_name

module procedure actual_name_1
module procedure actual_name_2

end interface

which allows either of the routines actual_name_1 or actual_name_2 to be called using the Fortran
symbol sub_name. Note that these procedure constructs can be used directly in the code for a
hard-coded set of routines which can be called from one interface name if desired (see section 1.7.7).

It is perfectly acceptable to have multiple interface blocks for a specific routine name, so long as all
of the referenced routines have different calling signatures. That is, they must accept differently
typed arguments so that it is possible for the compiler to determine at compile time which of the
routines should be called. In principle the actual routine names can always be used.

The Fortran templater creates one module per specified configuration, each with a unique module
name. It then performs substitutions on a specified template model to create routines for all of the
specified combinations of input types. These routines have their names adjusted to make them
unique for each configuration, and an interface block is created to make them accessible under their
original name. Finally all of these newly created modules are collected, with use statements, into a
macroscopic module which can be used from elsewhere.

1.8.2 Overall structure

A sample templated module structure is given here for reference. The different sections are explained
below.
This is the configuration block . Note that it has *. ini syntax ,
and that comments are preceeded by hashes .
[int]
type1 = integer (int32)

[float]
type1 =real(dp)

===================

include " macros .h"

module module_name

! This is the module which is templated to generate the ensemble
! of routines with differing types
use constants
implicit none

contains

elemental function test_fn (arg) result (ret)

%(type1)s, intent (in) :: arg
%(type2)s :: ret

end function

end module

supermodule module_name
!
! Here we include code that should be included in the module but
! does not need to be templated .

18

!
end supermodule

1.8.3 Configuration names and substitution

The top section of the file defines the templated configurations. It has the structure of an INI file,
and is processed by the standard python ini file parser.

Configurations are defined by a name, contained in square brackets, and then by a series of key-value
pairs. All values are treated as strings for the purpose of substitution in the main body of the
routine.

Configurations are inherited. That is to say that all key-value pairs (with the exception of
conditional_enable) are carried forward to the next configuration in the file unless they are overridden.
This permits quite sparse configuration files, at the expense of being a bit more tricky to modify.

The length of configuration names must be considered. They will be appended to module names
and the subroutine and function names contained therein. The templater does not have a magic
means to circumvent the Fortran 95 limit of 31 characters in any symbol. Therefore it makes sense
to use highly abbreviated configuration names.

The templater modifies the names of subroutines and functions as it processes the module. As such,
it is a little pick about syntax. Normal routine decoration specifiers such as pure and elemental are
supported, but functions must be declared using the result() specifier to define the return type.

If the special key conditional_enable is present, this is used to wrap the generated module in
#if #endif elements. See lib/quicksort.F90.template for examples.

Values from the key-value pairs are directly substituted into the templated module below, where
they replace the element %(key)s. (This specifier is the standard python named-string specifier).
Keys named beginning with type are treated specially, as described in the following section.

The templater cannot circumvent Fortran line length limits. If necessary a value to substitute
can be extended over multiple lines by ensuring the first character on a new line is a space, and
then just continuing. Make sure you remember the Fortran line continuation characters, as in this
example from the MPI wrapper code:
mpilen =((ubound (v ,1) - lbound (v ,1)+1)*(ubound (v ,2) - lbound (v ,2)+1)*&

(ubound (v ,3) - lbound (v ,3)+1))

There is a special variable, which can be accessed using %(name)s. This contains the name of the
current configuration.

1.8.4 Variable substitution

The templater has extremely powerful mechanisms to manipulate the types of variables. Variable
manipulation is enabled by using a key in the key-value pair section that begins with type. In
particular, the code is able to manipulate the number of dimensions that different arrays have.

As an example, take a routine which is passed an array, and a value that could be an element of
that array (such as is necessary for a binary search), such that
subroutine example (arr , elem)

%(type1)s :: arr (:)
%(type1)s :: elem ()
...

end subroutine

If type1 is a scalar value, this does a substitution exactly as would be expected:
[int] => subroutine example_int (arr , elem)
type1 = integer (int32) => integer (int32) :: arr (:)

=> integer (int32) :: elem
=> ...
=> end subroutine

19

However, it may be necessary for the value which is being considered in the array to itself be an
array. An example of this would be the bit representations used in NECI — a list of of these is a
two dimensional array, and any intermediate values would be arrays themselves.

In this case, an array type should be specified using the dimension keyword, and the code will be
automatically adjusted as follows:
[arr_int64] => subroutine example_int (arr , elem)
type1 = integer (int64), dimension (:) => integer (int32) :: arr (:, :)

=> integer (int32) :: elem (:)
=> ...
=> end subroutine

Essentially the number of : delimiters appearing in the variable definition is combined with the
number of dimensions specified in the type.

As a special case, temporary variables can be created of an appropriate size which are either scalars,
or have one dimension. For the definition
%(type1)s :: arr (:)
%(type1)s :: tmp(size(arr (1)))

then adjustment occurs as follows
[int] => integer (int32) :: arr (:)
type1 = integer (int32) => integer (int32) :: elem

=> integer (int32) :: tmp

And
[arr_int64] => integer (int32) :: arr (:, :)
type1 = integer (int64), dimension (:) => integer (int32) :: elem (:)

=> integer (int32) :: tmp(size(arr (1)))

In a similar way, the references made to these variables within the routines must be adjusted. This
is to ensure that correct sized array slices are used at all times. For the original templated code

arr1(j) = arr2(i)

the following will result in the the templated output if the variable is of an adjustable type and
declared at the top of the function:
[int] => arr1(j) = arr2(i)
type1 = integer (int32) =>

And
[arr_int64] => arr1 (:, j) = arr2 (:, i)
type1 = integer (int64), dimension (:) =>

1.8.5 The supermodule

In many modules, there are routines that do not need to be templated for different variable types.
As an example, within the MPI wrapper routines, the code to initialise MPI is not variable type
specific.

Code which is placed in the supermodule is not templated, and is included directly in the final
generated module.

1.8.6 Optional parameters and lines of code

It is good practice to write templated routines as generally as possible. This likely involves adding
more functionality than is needed in all cases, and switching this functionality on and off in some
way.

For example, the sorting routine can sort multiple arrays in parallel, according to the order in the
first array (such as sorting a list of determinants into energy order, where the energies are stored in
a separate array). It also needs to have comparison functions defined for scalars as well as arrays.

The extent to which interesting features can be developed is limited only by the developers
imagination in using the template substition. But two tricks are generally useful.

20

• Additional optional arguments
Subroutines can easily be given flexible numbers of arguments. This is useful for adding addi-
tional functionality (and allows multiple templated routines to use the same type values). The
templated subroutine definition Fortran subroutine example(arg%(extra_args)s) will generate the
following code Fortran [simple] => extra_args = => subroutine example(arg) => [extended] => extra_args = , arg2, arg3 => subroutine example(arg, arg2, arg3)
The next trick is useful for adding the type definitions of these additional arguments, and
enabling the code which uses them.

• Switching off lines of code
Lines of code in Fortran are trivially disabled when they are commented out. Prefixing lines
with a switch-value allows it to be disabled. For example

%(use_type2)%(type2) :: val ()
```

will allow an additional type to be used in a routine depending on
the configuration :

```Fortran
[unused] =>
type2 = =>
use_type2 =! => ! :: val ()

=>
[arr_real] =>
type2 = real(dp), dimension (:) => real(dp) :: val (:)
use_type2 = =>

1.8.7 Manual renaming of routines

The user can additionally manually create interface blocks for the templated routines. This is useful
where there is more than one possible function to call for each of the variable types.

An example of this is given in the MPI wrapper functions, where there are versions of routines that
require manually specifying the lengths of various parameters, and automatic versions which take
the lengths from the sizes of the arrays passed in. At the top of the templated module definiton lie
interfaces blocks such as
interface MPIReduce

module procedure MPIReduce_len_ %(name)s
module procedure MPIReduce_auto_ %(name)s

end interface

which makes use of the special %(name)s element to reference the generated routines after templating.

In this case, the templated routines MPIReduce_len and MPIReduce_auto will be available to the user
as usual, but the routines can both be called by the more generic name of MPIReduce with the
appropriate arguments supplied.

1.8.8 Examples

All of the features of the templating code have been heavily used the Shared Memory code, in
lib/allocate_shared.F90.template, the sorting code in lib/quicksort.F90.template and the MPI wrapper
code in lib/Parallel.F90.template. Other less aggressively used case can be found elsewhere.

1.9 Testing

NECI comes with a set of tests in the test_suite directory. Each of these tests have a benchmark
file. When you run the tests, the results of your calculation will be compared against those from
the benchmark files. If the values of certain results agree to within a predefined tolerance, the test
will pass.

The test suite is run using a python program called testcode2. This program will call the desired
tests, compare the results against benchmarks, and let the user know the outcome of each test.

21

You can clone testcode2 from github with the following command:
$ git clone https :// github .com/ jsspencer / testcode ~/ testcode2 }

There are tests for each of the three executables: neci, mneci and kneci. These are stored in the three
directories with the corresponding names. These directories are then divided into further directories
for the different types of tests. For example, mneci has subdirectories called rdm, excited_state,
kpfciqmc and so on, with tests for each of these corresponding features of NECI.

To run the entire test suite, just do
$ ~/ testcode2 /bin/ testcode .py

in the test_suite directory (assuming you cloned testcode2 to your home directory). To run this,
you will have to have all of neci, mneci and kneci compiled. However, you can also run a subset of
tests. For example, to run all mneci tests do
$ ~/ testcode2 /bin/ testcode .py -c mneci

or to run a particular single test do
$ ~/ testcode2 /bin/ testcode .py -c mneci /rdm/ HeHe_int

or to run two particular tests do
$ ~/ testcode2 /bin/ testcode .py -c mneci /rdm/ HeHe_int -c mneci /rdm/ HeHe_real

By default, testcode will just tell you whether or not the test passed. If the test failed, you can get
further information by increasing the verbosity of the output. For example,
$ ~/ testcode2 /bin/ testcode .py -c mneci /rdm/ HeHe_int -v

or
$ ~/ testcode2 /bin/ testcode .py -c mneci /rdm/ HeHe_int -vv

which will tell you why the individual test did not pass. You can also use the verbosity flags when
running the entire set of all tests.

1.9.1 Adding a new test

To add a new test, first create a directory in the appropriate subdirectory (for a parallel neci job,
inside ./neci/parallel). In this directory add the test’s input file (with a name ending in ’.inp’) and
any necessary additional files, such as integral files or POPSFILEs.

You should then add these files to git, for example:
$ git add neci/ parallel / new_test

If the test is added to a new subdirectory then you may need to add it to ./jobconfig. If you added
it to an already-exisiting directory, such as neci/parallel, then it should be automatically found by
testcode using the globbing in jobconfig.

You must then create a benchmark file by running the test suite. To create a new benchmark for
only the new test then run, for example,
$ testcode2 /bin/ testcode .py make - benchmarks -ic neci/ parallel / new_test

This should run just the new test. You will be told that the test has failed, and asked if you would
like to set the new benchmark. If you believe that the test has run correctly then do so with y.

-i tells testcode to ’insert’ the new benchmark ID at the start of the old list of benchmarks (located
in ./userconfig). When testcode is run later, it will use the benchmark files with these IDs to
compare against.

If you don’t include ’-i’ then testcode will remove all previous benchmarks. This is useful if you
want to reset benchmarks for the whole test suite, which can be done with:

$ testcode2 /bin/ testcode .py make - benchmarks

Finally, once this is done you need to add the new benchmark file to git. If the new benchmark ID
is, for example,
mneci - c3462e0 .kneci - c3462e0 .neci - c3462e0

22

then you can do:
$ git add neci/ parallel / new_test /* dneci - c3462e0 .kneci - c3462e0 .neci - c3462e0 *

You should then commit the newly added files. Please delete old benchmark files if you recreated
benchmark files for existing tests. You might like to try running testcode on the new test, and
making sure it runs and passes as expected, confirming the that the test was added correctly:
$ ~/ testcode2 /bin/ testcode .py -c neci/ parallel / new_test

1.9.2 Unit tests

Unit tests should test discrete, small, elements of functionality. Ideally these should be the smallest
elements such that functionality is then composed from “units” that have all been tested. By
considering each of the elements explicitly, it is possible to writ tests for edge-case behaviour, where
it is difficult to ensure that this behaviour will be tested in a full integration test case.

Unit tests are found in the unit_tests directory. They are arranged in subdirectories, each of which
corresponds to one of the files of NECI source code. There are a number of technical steps to
integrating new unit tests.

1. A passing test is an executable that returns 0, and any other return value indicates failure.
The developer has an entirely free choice to determine how they wish to write test executables.

2. The library FRUIT is provided to assist in writing unit tests. Within a given test (i.e. testing
a given function, or unit), there should be a suite of tests to cover all possbile cases. FRUIT
provides helper functionality to keep track of which element of a suite is currently running
(using the TEST() macros), check values (using call assert_equals, call assert_true and so forth),
keep track of where errors occurred and report them in an easily readible form. The module
can be imported with use fruit. See existing tests for examples.

3. If the current directory of tests does not contain a CMakeLists.txt file, create it. Ensure that it
contains a foreach() loop over the available \${PROJECT_NAME}_CONFIGURATIONS so that all the build
configurations of neci get tested. The directory should be added to the main CMakeLists.txt in
the unit_tests directory using the add_subdirectory() command.

4. Add the test to the CMakeLists.txt file in the directory in which it resides using the neci_add_test
command. This will require you to specify a name for the test, and the appropriate .F90 file.

5. To test the appropriate configuration of neci, add lib{k,m,d,}neci to the LIBS line. To use
the FRUIT helpers, add fruit to this line.

The easiest way to get these details correct is to copy existing examples.

Unit tests can be run using the command
ctest [-R <regex >]

which is a built in part of the CMake toolkit. By default this will execute all avaialable tests and
print a report on successes and failures. The optional -R flag specifies a regular expression, and
only tests matching this will be executed. There are a number of further options available.

A test can also be run directly by running its executable manually. This can be more
straightforward for capturing the output of a failing test whilst debugging. The executables are
found in the same position in the build directory as the source files are in the main repository
(i.e. unit_tests/det_bit_ops/test_countbits.F90 gives <build_dir>/unit_tests/det_bit_ops/test_countbits).

1.10 Interfacing C (and C++) code

Developers have always mixed Fortran code with external routines implemented in other languages,
especially C. This has generally been done on an ad-hoc basis by exploiting the naivety of the linker
— in particular that the linker will resolve dependencies with any symbol of the specified name. This
is useful, but introduces a number of potential problems:

23

• Name clashes
Different compilers follow different naming conventions. In particular Fortran compilers often
(but not always) append or prepend one or two underscores to symbols in the object files.
This is fine when resolving against other Fortran generated symbols, but requires coordination
with the symbol names produced in C.

A solution with an array of compile flags controlling the naming in the Fortran compiler,
and underscores liberally scattered through C files is fragile and unreliable. It also makes it
difficult to call library routines written in C.

• No checking of parameters
The linker is extremely stupid - it only matches by parameter name. If this method is used,
absolutely no checking is done on the parameters passed to the C routine from Fortran. This
is a recipe for disaster, and will generate only runtime errors.

• Calling
By default C passes arguments by value, whereas Fortran passes them by pointer. This
requires writing wrappers for almost any non-trivial C library routine to access it from Fortran.
Some constructs simply cannot be emulated.

• Variable types
As an extension of the lack of checking of parameters, there is no checking of argument types
across the Fortran/C interface. This relies on the Fortran and C code using the same types -
in particular the same size of floating point and integer variables. This is extremely hard to
guarantee, and these can fluctuate according to compiler flags. This can result in compiler
and computer specific runtime errors that are extremely difficult to track.

All of these problems can be solved using structured interfacing, at the cost of introducing a
dependency on the Fortran 2003 standard.

All access to C routines in NECI must be through a declared interface. This should be declared
only once, in a module. An example is given here:
interface

! Note that we can define the name used in fortran code , and the C
! symbol that is linked to independently .
subroutine fortran_symbol (arg1 , arg2) bind(c, name=" c_symbol ")

use , intrinsic :: iso_c_binding , only: c_int , c_bool
integer (c_int), intent (inout) :: arg1 ! Passed by pointer
integer (c_bool), intent (in), value :: arg2 ! Passed by value

end subroutine
end interface

A good summary of the rules and procedures for using this interoperability are given in this Stack
Overflow answer: http://stackoverflow.com/tags/fortran-iso-c-binding/info

C++ routines can be made suitable for access from Fortran by prepending symbol declarations in
the C++ code with extern "C".

1.11 Debugging tips

Code breaks. Sometimes it appears to rot with time. Finding bugs takes the majority of most
programmers time, and practices which make this quicker are invaluable!

Obviously, the techniques you will use will depend on the nature of the problem (tracking down
small numerical changes in output is generally much harder than finding what causes a segfault),
but there are number of tricks which can help!

1.11.1 Build configurations

As soon as you have a problem, build a debug rather than an optimised version of the code. This
cause a large array of changes to the compiled code:

24

http://stackoverflow.com/tags/fortran-iso-c-binding/info

• Array bounds checking
All Fortran arrays have well defined bounds on all of their dimensions. In debug mode the
compiler will insert code to check that all memory accesses are within these bounds. If not,
execution will be terminated with a message indicating at what line of what file the error
occurred. If running in a debugger (see later) execution will be interrupted at this point.

• Disable optimisations
Hopefully this will not make the bug go away! If it does, you are almost certainly looking at
either an uninitialised variable, or access beyond the end of an array.

The primary purpose of disabling optimisations is to make the mapping between the source
code and the executable more linear. This results in any error messages, and the output of
any tools, being easier to interpret.

• Adds debugging symbols
When your code crashes it is really useful to know what routine was running, and what the
stack trace (list of routines that have been called to get to this point in the code) is. Adding
debugging symbols provides the information to convert the memory addresses into files and
lines of source code. This makes error messages useful.

• Enables the ASSERT macro
There are many consistency checks internally in NECI that can be turned on in debug mode.
Particularly for difficult-to-find bugs, these are likely to fail substantially earlier in a run than
it is possible to view the problems in the normal output.

• Defines __DEBUG
Any blocks contained inside #ifdef DEBUG> sections are only enabled in debug mode. Most
of these contain either additional output specifically targetted to make debugging easier, or
additional consistency checks.

1.11.2 ASSERT statements are your friend

Generally the time to add ASSERT statements to your code is when you are writing it. Debugging
will make you acutely aware of their benefit. If you have a suspicion in which bits of code a bug
might lie, liberally sprinkling it with ASSERT statements can help to find bugs.

More usefully, when you find the bug, add ASSERT statements to the code to catch similar errors in
the future.

1.11.3 Learn to use your tools

Most of the programming tools in existence are for the purposes of debugging. Learn to use them!
Practice using them. The really work.

• Debuggers
The debugger is the most powerful tool you have. Essentially you run your code in a harness,
with the debugger hooked into everything important. On most Linux systems, the most
readily available debugger is gdb.

The debugger can trap any execution errors, and will interrupt (break) execution of your
program at this point — while preserving all of the memory and execution state. You can
examine the call stack (the nested list of functions that have been called), and the status of
all of the memory. You can also change the contents of any relevant memory and continue
execution to see the effects.

Break points can be added to the code at any line of any function, and execution interrupted
at that point. If your bug is only showing late in execution, you can interrupt on the n-th
time a function is called. You can step through the execution line by line in the source code,
examining all variables, and watch precisely what goes wrong.

25

The debugger is the swiss-army sledgehammer of tools.

• Valgrind
Valgrind is a tool for memory debugging. In essence it replaces most of the memory ma-
nipulation primitives provided by the operating system with instrumented versions. It will
track what happens to memory, where it is created, where it is destroyed, and what code
(in)correctly accesses it.

• Intel Inspector XE
If you have access to Intel tools, the Intel Inspector is an extremely powerful debugger,
memory analysis tool, performance enhancement and problem tracking tool. An top of a good
interface to normal debugging tools, it can apply a lot of analysis to your code’s execution,
and then filter through it to find where things go wrong.

1.11.4 Machete Debugging

When bugs are particularly non-obvious, a good first step is to reduce the complexity of the problem.
Try and remove as much code as possible. A good rule of thumb is to remove half of the code, and
retest. If the bug has gone away, then it required interacting with the other half of the code.

This technique can very quickly isolate a test case (that still fails) into something of manageable
size. In doing so, the bug normally becomes obvious. You can then revert to the original code, and
fix the problem there.

In a complex code, this process can be tricky. Lots of the sections of code are coupled to each other.
This can require some creative thinking. Choose the domain of your problem carefully (it may only
be necessary to apply the machete to one file), and aggressively decouple sections by commenting
out function calls.

Remember — it doesn’t matter if you break functionality doing this (you obviously will) so long as
you retain the buggy behaviour in the code that is left.

This is really good for finding strange memory interactions — left with the two routines that are
trampling on each others toes.

1.11.5 fcimcdebug 5

For bugs that change the trajectory of simulations, turning on the maximum debug output level in
NECI (by adding fcimcdebug 5 to the LOGGING block of the input file in a debug build) can often
give a quick insight into where the problem is located.

Many problems will exhibit with obviously pathological behaviour. For example trying to spawn NaN
particles, or an extremely large number, generally indicates a problem in either Hamiltonian matrix
element generation or calculating the generation probabilities. Similarly walkers being spawned
with repeated or zeroed orbitals are a give away.

Similarly, if the bug is recently introduced and a prior version functioned correctly (such as a test
code failure)

1.11.6 Look at the git logs

If you are chasing down a regression (such as a testcode failure), then there is certainly a version
that used to work, and a version which now does not. Frequently there are not many commits
between these two versions — have a look at what they are. Often the failure is really obvious!

If there are a large number of commits between the last known good commit and the first known
bad commit, then using git bisect is a very efficient way to locate the first bad commit and the
last good commit.

26

2 Guide to specific code in NECI

2.1 Important modules and common (global) variable names

2.1.1 Inexplicable names and anachronisms

A number of the variable names in NECI are largely inexplicable, or confusing, outside of their
origin in historical accident. This section tries to clarify some of these.

• ARR, BRR
ARR(:,1) contains a list of spin orbital (Fock) energies in order of increasing energy.

ARR(:,1) contains a list of spin orbital (Fock) energies indexed by the spin-orbital indices used
in the calculation.

BRR contains a list of spin orbital indices in increasing (Fock) energy order. Where multiple
degenerate orbitals have the same symmetry, they are clustered so that spin orbitals with the
same symmetry are adjacent to each other, and within that ordered by ms value.

• TotWalkers and TotParts
TotWalkers refers to the number of determinants or sites that must be looped over in the main
list. This may include a number of blank slots if the hashed storage is being used.

The number of particles (walkers) on a core is stored in TotParts. The total number of particles
in the system (including all nodes) is stored in AllTotParts.

• InitWalkers
The number of particles per processor before a simulation will enter variable shift mode.

• G1
The variable name G1 is a historical anachronism. It is an array containing symmetry
information about given basis functions. In particular G1(orb) contains information about the
one electron orbital orb.

The data is of type BasisFN:
type :: symmetry

sequence
integer (ints64) :: S

end type
type :: BasisFn

type(symmetry) :: sym
!! Spatial symmetry

integer :: k(3)
!! K- vector

integer :: Ms
!! Spin of electron . Represented as +/- 1

integer :: Ml
!! Magnetic quantum number (Lz)

integer :: dummy
!! Padding for alignment

end type

Not all of these values are required for all simulations. The sym element points at a padded
64-bit integer. This is done for memory alignment reasons that are no longer important.

2.2 Parallelism

FCIQMC is a highly parallelisable algorithm. Implementationally this is achieved through the use
of independent MPI processes that communicate using MPI.

The raw MPI_* routines, provided by MPI should not be used directly inside NECI for a couple of
reasons:

Depending on the build configuration and compiler, many variables may change their size or
alignment, leading to code which only works on some compilers, and

27

Naming conventions for linking vary between compilers.

The Parallel_neci module abstracts these implementational details away, presenting a consistent
interface.

2.2.1 Usage

The relevant MPI functions are accessible through wrapper functions with the underscore in the
name removed. For example, the MPI routine MPI_AllReduce is available as MPIAllReduce.

The arguments to the wrapper routines are a subset of those specified in the MPI standard, and
the explanations of those values may be found there.

Many of the routines have versions which require specifying the array dimensions manually (*_len)
or automatically (*_auto). The latter obtain the dimensions of the arrays to communicate by
analysis of the array bounds and are preferred, as they are less prone to user error.

If communication is desired between subsets of the available processors (as is used in the CCMC
code), the MPI communicator may be specified through the Node parameter. No further detail is
provided here about how to construct these objects.

If the necessary MPI routine is not present in the Parallel_neci module it will be necessary to add
it. This can be awkward as discussed below.

WARNING
The inplace MPI functionality is present (although disabled) in NECI. For the time being it
should not be used due to serious bugs in the interaction between ifort and OpenMPI.

WARNING
Different implementations of MPI are not interchangeable at runtime, even if they initially
appear to be. For instance, code compiled using OpenMPI on the ifort compiler will run
on MPICH built with the gnu toolset, but no communication will occur, and nProcessors
independent (identical) simulations will run.

WARNING
In keeping with the notion of failing early, and failing loudly, outside of the initialisation
and cleanup code, most of the templated MPI routines do not quietly report errors in status
variables, but will kill the entire simulation with a runtime error.

2.2.2 Important variables

A number of important control variables are available for use within NECI.

• nProcessors
The total number of processors initialised in the MPI calculation.

• iProcIndex
The (zero based) index of the current processor. This will be between 0 and nProcessors-1.

• root
The (zero based) index of the root (head) processor. This should be tested in code using:
if (iProcIndex == root).

• nNodes
The number of nodes initialised in the MPI calculation. In most cases this will equal nProcessors.
These values will only differ if the MPI space is being subdivided into smaller nodes.

28

• iNodeIndex
This (zero based) index gives the position of the processor in the current node. For most
calculations this will be zero on all processors.

• bNodeRoot
This specifies if the current processor is the root processor of a node. I.e. that this processor
is responsible for macroscopic communication. For most simulations this is .true. on all
processors.

2.2.3 Implementation

The current implementation of the Parallel_neci module works extremely well. It may, however, be
necessary to modify it, either to deal with changes in the available compilers, or (more likely) to
add support for additional MPI functions.

Fortunately, the latter is much more straightforward than the former! A modified version of a
currently implemented routine is likely to be the best approach.

2.3 Shared memory

In principle, when using MPI all of the processes are entirely independent except for the explicit
communication made through the MPI library. Within NECI, as all of the particles are entirely
independent between annihilation steps this is a good thing.

However, we have a large amount of read-only data. The integrals which are read in from the
FCIDUMP files can consume a non-trivial proportion of the available system memory, and are
duplicated on each of the processes. On modern multi-processor and multi-core systems this is an
outrageous waste of system memory — which is made worse by the fact that if the same regions of
this memory are requested on multiple different processors the computer will not know these are
the same, and will not be able to make use of the L1, L2 and L3 cache to speed memory access.

The shared memory provisions in NECI substantially abuse the MPI specification by mixing the
available memory address space between the different processes. This is extremely useful when
done careful, but there are some caveats to be aware of.

2.3.1 How to use shared memory provisions

The shared memory provisions have been designed to be as interchangeable with the normal Fortran
memory allocation provisions. Essentially memory is allocated largely as usual, but all of the
processes on the same physical node will end up with pointers to the same block of memory.

Memory is allocated with a call to
subroutine shared_allocate (name , ptr , dims)

This is a templated routine, and so will work for a wide variety of data types and array dimensions.
The name parameter specifies a unique name for this array. This name is used to identify the
particular block of shared memory between the processes (there may be an arbitrary number). The
ptr parameter is a Fortran pointer with the relevant data type and the correct array shape. dims is
an array of integers indicating the size of each dimension of the array to be allocated.

As an example,
real(dp), pointer :: real_arr (: ,:)
...
call shared_allocate (" example ", real_arr , [6, 13])

will allocate a 2-dimensional array named “example” with the array bounds (1:6, 1:13), equivalent
to allocate(real_arr(6, 13)).

29

The read only data should now be written. In principle, the data only needs to be written from one
of the processors per node — in practice it is easiest to get all of the nodes to write the read only
data. It is important that data is only written at this stage — any processing that needs to be
done on this data must not happen in the shared memory, as it could be disrupted by the other
processes. This scheme only works because all of the processes write exactly the same data.

After data initialisation, the processes must be synchronised with a call to MPIBarrier. This will
ensure that the read-only data is in the same state in all of the threads.

WARNING
The POSIX memory model makes few guarantees about when memory that is shared between
processes gets updated (as opposed to between threads). This shared memory must not
be used for communicating between the MPI processes. That is what MPI is for.

WARNING
There are no synchronisation primitives provided for use with these shared memory blocks.
No assumptions can be made about the order of access between the processes. All actions that
are carried out must be inherently thread-safe, or errors will eventually (and unexpectedly)
occur.

The data should be deallocated using the routine shared_deallocate.

2.3.2 Quirks and limitations

• Customising data types
The shared memory routines are templated so that they can be used with a wide variety of
plain-old-data types and array sizes. For any data types outside of those already templated,
new configuration options will be needed in lib/allocate_shared.F90.template. The information
required is the number of bytes per element of the array.

If custom types are desired, this may be quite tricky. It is difficult to guarantee the size,
memory alignment and packing of the data in a custom type — the compiler is free to choose
how it wishes to do this, and as such it varies from compiler to compiler. It is necessary to
use the sequence keyword must be used to force the compiler to store data contiguously. If
there are pointer or allocatable elements in the custom type, it cannot be used with shared
memory, as the size of these elements is highly variable between compilers.

• Storing bit representations
There is a special allocate routine shared_allocate_iluts which can be used for storing bit
representations — these differ in that the lower bound of the first array index must be 0,
rather than 1.

• Non-uniform memory architectures
Modern chip architectures (in particular the intel i3, i5 and i7 series of processors) move the
memory controller onto the processor. This dramatically improves memory access speeds.

The cost is that on multi-processor (as opposed to multi-core) architectures the memory is
segmented into regions that are controlled by the different processors. Memory access within
the region controlled by the current processor is faster than that between them.

A performance increase could be obtained by only sharing memory between processes which
are hosted on the same physical processor. This will require using the processor affinity
options of MPI, which is not routinely done currently with NECI. Further, it will require
subdividing the processes on each physical node into sub-nodes — support for this exists in
the code in NECI, but the processor specific information required to correctly subdivide the
processes is not included, and this facility is currently switched off.

30

For processor topology, see the Intel documentation at https://software.intel.com/en-
us/articles/ intel-64-architecture-processor- topology-enumeration.

• Disabling shared memory
Shared memory is enabled by the pre-processor define SHARED_MEM_. This can be found in the
config files for platforms that support it. If necessary, this can be removed from relevant
config files and Makefiles, which will disable inter process memory sharing, and fall back on
the normal Fortran allocate mechanism.

2.3.3 How it works

The way that inter-process memory sharing works is system specific, and depends on operating
system primitives being used directly.

The code templating functionality in NECI is used to make the shared memory wrapper work for a
wide range of data types, with differing numbers of dimensions in the arguments. From this the size
of memory required in bytes is calculated, and this is passed to a C helper function that allocates
the memory. The returned raw pointer is converted to a Fortran one through the Fortran 2003
intrinsic c_f_pointer.

The C helper library contains a number of utility functions to help it interface with Fortran. In
particular wrapper so it can print to the same output, and a mapping to store additional data
about the allocated memory to assist in deallocating without the Fortan code requiring knowledge
of how the operating system intrinsics work.

Beyond that, there are three main code paths:

• POSIX
A unique file name is created, based on the current working directory. The function call
shm_open with the control parameter O_CREAT will open, or create, a POSIX shared memory
object. As a result, one of the processes on a node will create the mapping, and the others
will join it — it is unknown in advance which will do the creating.

The returned descriptor acts as a file, and so is set to the desired length with fdtruncate, and
then mapped into memory as if it were a memory-mapped file using mmap. The file descriptor
is then closed as it is no longer needed.

Once all of the processes have mapped the memory, the shared memory object is unlinked,
ensuring that the memory will be deallocated by the operating system when all of the processes
stop (preventing a memory leak if the processes crash).

The memory can then be manually deallocated using munmap.

• System V
A unique file name is generated, based on the current working directory, and the file is created.
A System V Inter Process Communication Key is created and obtained from this file using
the routine ftok.

Using this key, a shared memory object of the correct size is created using shmget, and this
region is mapped into memory using shmat.

Once all of the processes have reached this point, the shared memory control object is
destroyed using shmctl to ensure the operating system will deallocate the memory in case of a
crash.

The memory can be manually deallocated using shmdt.

• Windows
The memory mapped file provisions in Windows are used to generate a shared memory
region. A unique file name is created, based on the current working directory, and then a
non-filesystem backed file is created with CreateFileMappingW. This can be opened by all of

31

https://software.intel.com/en-us/articles/%20intel-64-architecture-processor-%20topology-enumeration
https://software.intel.com/en-us/articles/%20intel-64-architecture-processor-%20topology-enumeration

the other processors on the same node using OpenFileMappingW, and this “file” is mapped into
memory on all of the processes using MapViewOfFile.

The memory can be manually deallocated using UnmapViewOfFile followed by CloseHandle.

The subroutine iluts_pointer_jig, which is used when allocating bit representations which start
from an index of 0 rather than 1, is an interesting demonstration of how to manipulate the bounds
of arrays declared in Fortran in compilers that do not support the array reshaping assignments
described in Fortran 2003 (most compilers).

2.4 Integral retrieval

Integral retrieval is found in the tightest of the tightest loops within NECI. Calculating each
Hamiltonian matrix element may require a number of different two- and four-index integrals, and
at least one Hamiltonian matrix element is required for each generated excitation.

As a result, the normal approach taken to prevent code repetition introduces a bottleneck. If
there is a get_umat_el function, this will have to contain the logic as to which type of integral is
being obtained, and where this should be located. This conditional logic will be executed for every
required integral.

As such, access to the integrals is through a procedure pointer, with the interface
abstract interface

function get_umat_el (i, j, k, l) result (hel)
use constants
implicit none
integer , intent (in) :: i, j, k, l
HElement_t :: hel

end function
end interface

This function pointer can then be called from anywhere in the code (after it is initialised) and this
will call the correct routine.

2.4.1 FCIDUMP files

The most commonly usedintegrals routines store their integrals in memory after reading them in
from a FCIDUMP file.

These routines support FCIDUMP files produced by various codes, including MOLPRO, PSI3 and
VASP (hacked versions of Dalton and QChem also support this - I believe MOLCAS as well now).
Certain (generally legacy) FCIDUMP files have a strictly fixed format, which can result in adjacent
columns of indices merging. As such, they are read via an explicit format. To use MOLPRO or
other FCIDUMP files the MOLPROMIMIC option should be supplied in the SYSTEM block of the input file.
Other sources of FCIDUMP file should use the FREEFORMAT option. In general, this should always be
used.

The FCIDUMP files can be briefly summarised by

• Header
The header is specified as a Fortran namelist, with the following possible elements:

– NORB
Specifies the number of spatial orbitals in the system if RHF, or the number of spin-
orbitals if UHF.

– NELEC
Specifies the number of electrons the Hartree–Fock determinant should have.

– MS2
Specifies twice the total projected spin of the system (such that it is always an integer)

32

– ORBSYM
A list of spatial symmetries of the orbitals specified in (??? Check name with Giovanni)
format in orbital order. Note that the structure of the reference determinant will be
visible here if the MOLPROMIMIC option is used, and the reference is to be determined by
the order of the orbitals.

– ISYM
The symmetry of the reference determinant specified in the same format.

– UHF
T if the file contains a UHF basis, otherwise F.

– SYML, SYMLZ
The total and projected orbital angular momentum for systems with an axis of rotation.
Currently FCIDUMP files which use this option can only be generated using QChem,
and the resultant file must be pre-processed using the TransLz utility.

– PROPBITLEN, NPROP
These parameters are used to describe the behaviour of k-point symmetries. For more
details contact George Booth.

• 4-index integrals
Following the header, all of the integral and energy lines may follow in arbitrary order.

The 4-index integrals are specified with the format Z i j k l, where Z is the real or complex
element, and the indices are integers. All indices are one-based. Indices are in chemical
notation!

• 2-index integrals
The 2-index integrals are specified in the same way with the final two indices equal to zero.

• Fock energies
The Fock energies are specified in the same way, with the final three indices equal to zero.

These values are used for determining the initial (Hartree–Fock) determinant, which is
constructed from the lowest energy spin-orbitals. They are strictly optional. If the MOLPROMIMIC
option is supplied then the order of the orbitals determines the reference determinant.

• Core energy
The core energy is specified in the same way, but with all four indices set to zero.

2.4.2 Generation on the fly

A number of schemes exist for generating integrals on the fly. In particular the Uniform Electron
Gas and Hubbard model have integrals that can be trivially calculated, and so FCIDUMP files are
not used.

2.4.3 Nested schemes

There exist two function pointers with the same abstract interface, get_umat_el and
get_umat_el_secondary. Once the primary method of determining integrals has been selected, then
this be moved to the secondary pointer, and another wrapper routine used instead. This allows
additional filtering logic to be applied.

The wrapper routine should then call get_umat_el_secondary internally.

33

2.4.4 Fixed Lz and complex orbitals

If either projected angular momentum (Lz) symmetry, or complex orbitals are being used, the
pattern of restricted zeros in the integrals changes. Wrappers around the normal get_umat_el routine
are used to supply these zeros.

These are examples of the nested schemes above.

2.4.5 Further schemes

It is likely that further schemes will be required in the future. In particular, approximate, and
interpolating schemes are likely to be required to reduce the O(M4) memory dependence on the
number of orbitals. These should be implemented as new routines to be pointed at using the
function pointers.

2.5 Hamiltonian matrix element evaluation

The two- and four-index integrals are the primary input to a FCIQMC calculation. However, they
are used via Hamiltonian matrix elements. There are a number of considerations for the way that
Hamiltonian matrix elements are used in NECI.

2.5.1 Different ways to obtain Matrix elements

Certain pieces of information are required in order to calculate Hamiltonian matrix elements. The
Excitation level (the number of differing orbitals between the determinants), the corresponding
excitation matrix and the parity of the excitation are necessary. Depending on the excitation level,
the decoded list of occupied orbitals is required.

Depending on where in the execution path the Hamiltonian matrix elements are required, different
information is readily availabile. As some of this is relatively expensive to calculate (in particular
the parity) it is important that as much information as is available is used.

As part of the spawning and particle generation process, there is a function pointer called
get_spawn_helement. This is passed the natural integer and bit representations of the determi-
nant, the excitation level, excitation matrix, parity and (potentially) pre-calculated matrix element.
Depending on the initialisation options, the routine which is selected will make use of the correct
subset of these. It is important that the excitation generator and the choice of Hamiltonian matrix
element generation here are tightly coupled.

Elsewhere in the code, the routine get_helement is used to obtain matrix elements.[ˆgethelement]
This routine comes in a number of flavours. The available options are

• nI, nJ
This routine will return the matrix element between any two, arbitrary, decoded determinants.

• nI, nJ, ic
This version is provided the excitation level of the determinant in addition.

• nI, nJ, ic, ilutI, ilutJ
The bit representations of the two determinants are provided, which greatly enhances calcu-
lating the parity if needed.

• nI, nJ, ilutI, ilutJ
If both the bit representations and the decoded versions are present but no further information
is known then this form should be used.

34

• nI, nJ, ilutI, ilutJ, ic_ret
This version is the same as the above, but returns the excitation level of the pair of determinants
in addition to the matrix element.

• nI, nJ, ic, excitMat, tParity
When everything about the relationship between the two determinants is fully known, this
form should be used. It is used implicitly after excitation generation when the excitation level,
matrix and parity are known. The second decoded determinant is not used in determinental
calculations, but is provided to support systems such as CSFs.

For calculating diagonal Hamiltonian matrix elements, the routine get_diag_helement should be
used[ˆdiagelem]

2.5.1.1 The cost of the parity The overall sign of the returned Hamiltonian matrix element
is modulated by the parity of the excitation — that is, the whether the number of pairwise swaps
of orbitals required to maximimally align the two determinants according to the standard order of
the first is odd or even.[ˆdouble_excit]

The parity may be obtained by actively aligning the decoded representations, or by examination
of the bit representations. The latter is much faster than the former, but is still the rate limiting
factor for calculating Hamiltonian matrix elements.

Where this factor is known (i.e. after excitation generation) it should be used. It is worth noting
that the weighted excitation generation scheme is only viable because only the absolute value of
the matrix elements is modelled, so the parity generation step can be entirely ignored.

2.5.1.2 Slater–Condon rules implementations The Slator–Condon rules are implemented
in the file sltcnd.F90, in the routines sltcnd and then more specifically sltcnd_0, sltcnd_1 and
sltcnd_2. There is a certain amount of duplication both of code paths and of conditional testing in
these routines — which is a clear violation of the DRY principle.

Access to matrix elements is inside the smallest of the tight loops in NECI. The provision of
duplicated logical pathways, rather than conditional switching, has a measurable performance
benefit in this case.

2.5.1.3 HPHF matrix elements In most cases the HPHF matrix elements are trivially
obtained from the normal determinental matrix elements through multiplication by a factor of

√
2

in all cases where the determinant is not closed shell.

If the excitation level is less than or equal to 2, then the elements are a little more complicated. It is
possible that both the target determinant and its spin pair are connected to the source determinant,
and so the resultant matrix elements will require two calls to the Slater–Condon routines.

2.5.1.4 Spin eigenfunctions Spin eigenfunctions may be expressed as linear combinations of
all determinants with a given spatial structure. The Hamiltonian matrix elements may be expressed
as a two index sum over all the determinants with each of the involved spatial configurations.

Given that the number of configurations increases permutationally with the number of unpaired
electrons, this scheme scales extremely badly. NECI has some aggressive optimisation to slightly
improve this scaling (see Simon’s thesis), but ultimately it is a dead end for big calculations.

See the SPINS branch for Hamiltonian matrix element calculation between other types of spin
eigenfunctions. These can scale extremely well, but introduce other problems.

35

2.6 Excitation generation

Excitation generation is the most complicated and intricate part of NECI. Not only must random
moves be made, but they must be made in a manner which is efficient (taking account of symmetry,
and in terms of implementation). They must also correctly compute the generation probabilities,
taking into account multiple possible selection routes to the same determinant.

A failure to generate all of the connected determinants, or mistakes made in calculating the
generation probabilites will lead to silent errors that manifest themselves only through (potentially
subtly) incorrect energies being produced by the simulation.

There are a large number of factors that must be considered when writing an excitation generator.
This section aims to give an overview of some of them, and a brief outline of the two most commonly
used excitation generators.

The Alavi group collectively has a large amount of experience writing excitation generators, and
anybody intending to write or modify them would be advised to speak to Simon Smart or George
booth first.

2.6.1 Interface

Excitation generation is accessed through a procedure pointer. As such, all excitation generators
must have the same signature. It is described by
subroutine generate_excitation_t (nI , ilutI , nJ , ilutJ , exFlag , ic , &

ex , tParity , pGen , hel , store)

use SystemData , only: nel
use bit_rep_data , only: NIfTot
use FciMCData , only: excit_gen_store_type
use constants
implicit none

integer , intent (in) :: nI(nel), exFlag
integer (n_int), intent (in) :: ilutI (0: NIfTot)
integer , intent (out) :: nJ(nel), ic , ex (2 ,2)
integer (n_int), intent (out) :: ilutJ (0: NifTot)
real(dp), intent (out) :: pGen
logical , intent (out) :: tParity
HElement_t , intent (out) :: hel
type(excit_gen_store_type), intent (inout), target :: store

end subroutine

nI and ilutI describe the natural integer and bit representations of the source determinant for the
excitation. nJ and ilutJ will store the generated excitation. exFlag specifies the type of excitation —
this is generally unused, but in some excitiaton generators permits selecting between single and
double excitations for the purposes of testing.

store provides a location for the excitation to store information that is specific to the source
determinant. This information is available for further excitations from the same site.

ex will contain the excitation matrix; ex(1,:) contains the spin-orbitals of the source electrons in nI,
and ex(2,:) contains the spin-orbitals that have replaced these values.

ic is used to return the excitation level of the resultant site relative to the source site, pGen returns
the generation probability for the generated determinant, tParity returns the parity of the excitation
(is the number of pairwise swaps required to align nI and nJ even or odd), and hel can return the
Hamiltonian matrix element for this excitation so that it need not be calculated later (this is only
really of interest for HPHF calculations, where it can be easier to calculate this matrix element in
the excitation generator for technical reasons).

36

WARNING
Note that the determinant returned in nJ must be sorted in the same fashion as the source
determinant nI. This normally means in order of ascending spin-orbital number. This can
result in substantial reshuffling of the internal order of the detrminant.

WARNING
It is possible that to implement a sensibly efficient excitation generator, the simulation may
make choices which leave no possible excitations remaining. An excitation may be aborted
by setting the first element of nJ to zero, so long as the calculated generation probabilites
for successful excitations are correct.

2.6.2 Symmetry handling

The excitation generator must always preserve the symmetry of the determinant. The way in which
this is done depends on the excitation generator, but will involve measuring the symmetry of the
source orbitals and selecting the target orbitals appropriately.

The symmetry of a specific orbital, orb, may be found in the array G1. The spatial symmetry is
found at G1(Orb)%Sym%S, the k-vector (if appropriate) at G1(orb)%k, and the projected spin and orbital
angular momentum values at G1(orb)%Ms and G1(orb)%Ml.

There are also a number of useful macros for measuring and manipulating spin values. is_beta
and is_alpha test if orbitals have beta and alpha spin respectively, whilst is_one_alpha_beta test that
two orbitals have differing spins. The get_spin macro gets the spin in the unusual format for 1
for alpha and 2 for beta as used in some other NECI routines, and get_spin_pn obtains the more
standard values of ±1. The is_in_pair macro tests if two orbitals belong to the same spatial orbital
(including the case where they are the same orbital).

The macros get_alpha and get_beta obtain the alpha or beta orbital corresponding to the same
spatial orbital as the current spin orbital (which may or may not be the same orbital). ab_pair
obtains the spin paired orbital to the current one.

It is normally necessary to combine and manipulate symmetries, as for a double excitation Γi⊗Γj =
Γa ⊗ Γb, but there is no reason for any of Gammai, Gammaj , Gammaa, Gammab to be the
same. The products of symmetry labels should be taken using RandExcitSymLabelProd, rather than
directly using ieor commands (which will normally obtain the same result), to protect against the
consequences of using different types of symmetry. When combining Ml values it is important to
bear in mind the maximum permitted value of Ml, and abort the excitation if necessary.

The class count arrays, described above, are indexed by a a combined symmetry index, that
combines spin, k-point, momentum and spatial symmetries. The index to this array is provided by
the function ClassCountInd. Given a total spin, momentum and spatial symmetry, the paired class
count index may be obtained using get_paired_cc_ind. The number of occupied, and unoccupied spin
orbitals are stored in the data store as decribed above. The total number of orbitals corresponding
with a given class count is found at the corresponding location in the array OrbClassCount.

The array SymLabelList2 contains all orbitals sorted by symmetry class, with offsets given in
SymLabelCounts2, such that all of the orbitals with the same symmetry as a given orbital, orb, may
be found as follows
integer :: sym , spn , ml , norb , cc_ind , offset

! Obtain the symmetry labels associated with this orbital
sym = G1(orb)% Sym%s
spn = get_spin (orb)
Ml = G1(orb)% Ml

! Obtain the combined symmetry index
! cc_ind = ClassCountInd (orb) ! ... alternatively

37

cc_ind = ClassCountInd (spn , sym , ml)

! Get position and count of orbitals
norb = OrbClassCount (cc_ind)
offset = SymLabelCounts2 (1, cc_ind)

! And this slice contains the appropriate orbitals (including orb)
SymLabelList2 (offset : offset + norb - 1)

2.6.3 Manipulating determinants, and bit representations

The primary output of the excitation generator is the newly generated determinant. It is much
more computationally efficient to copy and modify the source determinant and bit representation
than to start from scratch. As such there are two processes to consider.

• Manipulating bit representations
Orbitals can be cleared from the bit representation using the macro clr_orb, and set us-
ing the macro set_orb. For an excitation from orbital a to orbital i this would look like
Fortran clr_orb(ilut, a) set_orb(ilut, i)

• make_single and make_double
Manipulating the natural integer representation of determinants is substantially more compli-
cated, as there is a requirement that they remain sorted by spin-orbital number. Although it
would be straightforward to, essentially, replace the excited orbital with a new one, and sort
it, this is inefficient as the parity of the excitation is going to be required. If the manipulation
can be carried out in such a way that the parity is naturally returned this will substantially
improve the efficiency.

The routines make_single are passed the source determinant and respectively one or two source
electron positions and target orbitals. They perform the substitution and measure how much
the newly placed orbitals must be moved by to restore sorting (accounting for edge cases).

These functions return the sorted determinant, the excitation matrix and the parity of the
excitation. They should be used by all determinental excitation generators.

2.6.4 Data storage

Each site in the main particle list may be occupied by multiple particles. There is a reasonable
amount of information which the excitation generator must generate for each site it excites from —
it makes sense to store this information and reuse it for each of the particles on the site. A data
structure of type excit_gen_store_type is passed to the excitation generator that it can use for this
purpose:
type excit_gen_store_type

integer , pointer :: ClassCountOcc (:) => null ()
integer , pointer :: ClassCountUnocc (:) => null ()
integer , pointer :: scratch3 (:) => null ()
integer , pointer :: occ_list (: ,:) => null ()
integer , pointer :: virt_list (: ,:) => null ()
logical :: tFilled
integer , pointer :: dorder_i (:) => null ()
integer , pointer :: dorder_j (:) => null ()
integer :: nopen

end type

The arrays that are required for the current excitation generator are allocated during calculation
initialisation by the routine init_excit_gen_store.

When the excitation generator is being called on a new determinant, the tFilled variable will be set
to .false. by the main loop code. Once the generator has filled in the required information this
should be set to .true. to indicate that the data may be reused.

The arrays ClassCountOcc and ClassCountUnocc are initialised by calling construct_class_counts at the
start of the excitation generator. They contain a count of the number of occupied, and the number

38

of unoccupied, orbitals associated with each spin-symmetry combination. These are used for
calculating the probabilities in essentially all excitation generators.

The occ_list and virt_list variables store only information relevant to the excitation generator in
symrandexcit3.F90.

The dorder_*, nopen and scratch3 variables are used in the CSF excitation generation code.

As there is only one instantiation of this data structure, in the main loop, adding additional elements
adds only negligible overhead. If future excitation generators need a place to store information
between calls, it should be added here.

The excitation generation routines should be as tightly coupled to the Hamiltonian matrix element
generation routines as possible. In particular, information such as the excitation level and the
excitation matrix are trivially available in the excitation generator and expensive to calculate
otherwise. As it stands, the interface for the excitation generator permits passing the excitation
level, parity and excitation matrix to the matrix element generation routines — this is sufficient for
determinental systems.

If NECI is to be extended to efficiently consider other basis functions, then other data will be
required. A structure should be created to pass this information around, so that each element which
is added does not require adjusting the interface of each and every excitation generator. This has
been done in the SPINS branch, with a type named spawned_info_t, which is unlikely to be merged
into master for independent reasons, but may provide a template for doing this if required in the
future.

2.6.5 Re-use and rescaling of random numbers

In determinental calculations, even with large basis sets, each site is connected to at most a few
thousand others. A single 64-bit random number contains vastly more random information than is
required to make a good choice between all of these options.

However, most of the potential algorithms for excitation generation involve a hierarchy of choices.
The natural implementation of these choices is to generate a new random number for each new
choice that is required. This is highly wasteful, especially as random number generation is relatively
expensive.

More bang-for-your-buck can be extracted from random numbers by partitioning them, and rescaling
them as you move through the hierarchy of choices. A simple example demonstrates this, considering
the macroscopic choice between single excitations and double excitations:
real(dp) :: r
r = genrand_real2_dSFMT ()
if (r < pDoubles) then

! Double excitation selected . Now rescale r
r = r / pDoubles
...

else
! Single excitation selected . Now rescale r
r = (r - pDoubles) / (1.0 _dp - pDoubles)
...

end if

This is not always done in the current implementations of excitation generators, but should always
be considered for efficiency.

WARNING
This technique should not be used where selections may need to be redrawn. Repeated
repartitioning and scaling of the random number will rapidly deplete the available randomness
if it is repeated a number of times due to redrawing.

39

2.6.6 Timestep selection and other control parameters

The spawning process is normally the limiting factor for the selection of the imaginary timestep.
The magnitude of the spawn, ns, is given by

ns = δτ

∣∣∣∣ Hij

pgen(j|i)

∣∣∣∣ .
As such, a limit on the value of δτ may be obtained from the maximum value of that ratio, combined
with a (chosen) maximum size of spawn;

δτmax = ns,max ×
(

max
∣∣∣∣ Hij

pgen(j|i)

∣∣∣∣)−1
.

The ratio should be accumulated through a calculation, and can be used to determine the optimum
time step on the fly.

This approach may be generalised to a larger number of parameters. Additional control parameters
that influence decisions in the excitation generator may be introduces (such as the choice between
single and double excitations, or the extent to which a bias is made towards or against double
excitations which are spin aligned).

Considering the different choices that are made in the excitation generator, this splits the excitations
into a number of different categories. For optimal timestep values the worst case for each of these
categories should be optimised to give the maximum spawn size.

The impact of each of the parameters to be optimised must be removed from the generation
probability values, so that an unaffected value can be maximised. For example considering a split
between single and double excitations;

ns,max = δτ
δτ

psingle

∣∣∣∣Hijpsingle,iter

pgen(j|i)

∣∣∣∣
single

= δτ
δτ

1.0− psingle

∣∣∣∣Hij(1.0− psingle,iter)
pgen(j|i)

∣∣∣∣
double

.

In this case the current value of psingle,iter (i.e. the value on the particular iteration the generation
occurred) is removed from the ration which can then be maximised. Closed form expressions for
the optimal values of δτ and psingle can then be found straightforwardly.

This approach can be extended, although the means to isolate the impact of parameters on the
generation probability, and the structure of the final closed form expressions will depend on the
form of the excitation generator.

2.6.7 Testing excitation generators

It is critical that excitation generators are correct. That is that all of the connected determinants
are generated, and that the generated probability is correct.

There are a number of metrics that can be used to test this. A testing function should be written
that takes a given source determinant as a parameter, and runs the excitation generator a very
large number of times on this determinant (for example, 10 million times). This test function
should contain a number of tests:

• Are the correct determinants generated
A list of all single and double excitations of the correct symmetry should be enumerated
in a brute force manner (see GenExcitations3). It should then be checked that all of the
determinants in this list are generated by the excitation generator, and no determinants
outside this list are generated.

• Normalisation of generation probabilities
An accumulator value should be kept for each possible determinant that can be generated.

40

Each time the determinant is generated, the value p−1
gen should be added to that determinants

accumulator.

On average this will add a value of 1.0 to the accumulator for every excitation generation
attempt. Thus, when all of the accumulated values are divided by the number of generation
attempts made by the test function, all of the values should give roughly 1.0.

There may be a reasonable amount of variation, but repeated across a few different runs with
different random number seeds it should be clear that all of these values give roughly 1.0.

Note that if some connections are extremely strongly weighted against (as can happen with
the weighted excitation generator) they will sum in a very large term very rarely, and so their
averaged value can jump around quite dramatically.

• Overall probability normalisation
As an extension to the above, the sum of all of the accumulators should stocastically tend
towards the number of connections multiplied by the number of spawning attempts.

If this total accumulated value is divided by the number of connections multiplied by the
number of spawning attempts it should average very strongly to 1.0, normally to four or five
decimal places.

For an example test function, see test_excit_gen_4ind in symrandexcit4.F90. An excitation generator
that passes these tests is not guaranteed to be correct, but it is quite likely.

2.6.8 How this interacts with HPHF functions

HPHF functions present a complexity for excitation generation. Excitation generation occurs on
determinants, but the HPHF function includes the spin flipped pair. When there are only a small
number of unpaired electrons, the possibility of the excitation generator having generated the spin
flipped version also needs to be available, although this is not readily accessible in the excitation
generator.

As a result, a routine must be provided to calculate the probability of generating 〉Dj | from 〉Di|
without actually generating an excitation.

WARNING
Once the excitation generator has been planned out, it makes sense to write this calculation
function first (it tends to be simpler than the excitation generator). A call to it can then be
included at the end of the excitation generator inside #ifdef DEBUG_ flags, which provides a
powerful correctness check, and catches any cases where these functions diverge.

2.6.9 The uniform selection excitation generator

A full discussion of this excitation generator is found in the paper (. . .). The operation of this
excitation generator is also the basis for a number of other more specialised excitation generators
(such as the CSF excitation generator). This excitation generator is implemented in symrandexcit2.F90.

Although the generation probabilities associated with this excitation generator are highly non-
uniform, it fundamentally makes choices at each stage of the excitation generator uniformly between
the options presented at this point.

For single excitations, an electron is chosen uniformly at random. This fully specifies a symmetry
index, and from the appropriate list a vacant orbital is chosen at random. This selection is generally
made by picking an orbital with the appropriate symmetry at random, and re-drawing if it is
already occupied (unless there are very few available choices, in which case the n-th available orbital
is chosen from an enumeration of available orbitals).

41

For double excitations, a pair of electrons are chosen at uniform (using a triangular mapping). This
specifies the total symmetry of the excitation. A vacant orbital, a, is then chosen at random from
the entire array of orbitals (in the same way as above, redrawing if an occupied one is chosen, or if
an orbital is selected that has no available orbital b that could produce the correct total symmetry).
This in turn specifies the symmetry of orbital b, which is chosen in the same way as the orbital for
a single excitation.

The possibility of having picked the orbital b first, and then a must be accounted for in calculating
the generation probabilities.

2.6.10 The weighted excitation generator

This excitation generation scheme is discussed in a great deal more detail in a paper which
is currently pre-publication. This excitation generator is implemented in symrandexcit4.F90 as
gen_excit_4ind_weighted.

Fundamentally, a weighting value is used to bias the choice of orbitals towards those which are
likely to correspond to large Hamiltonian matrix elements. This is done using a Cauchy–Schwarz
decomposition of the Hamiltonian matrix elements. The specific elements used depend on the spin
choices made, and are discussed in the referred paper.

For speed, the entire choice of orbitals of a given symmetry are considered, and the weightings
corresponding to orbitals which are occupied in the source determinant are set to have a zero
weighting.

For single excitations, an electron is chosen uniformly at random. This determines the target
symmetry. A cumulative list of the weighted terms for each of the available orbitals is generated,
and a random number on the range of the largest element in this list is generated. A specific index
into this list is selected by binary searching for the first element in the cumulative list which is
greater than or equal to this random number, and this index specifies which of the orbitals of the
given symmetry are selected as the target orbital.

For double excitations, a choice is made of whether the two orbitals should have the same spin or
different spin (the probability of either is optimised on the fly at run time). If the two electrons
are to have the same spin, they are chosen uniformly using a triangular mapping, and otherwise
uniformly using a rectangular mapping. This entirely determines the target combined symmetry
index.

A list is constructed, with a length equal to the total number of available target symmetry indices.
This is populated with a cumulative count of the product of the number of available orbitals of a
given symmetry with the number of available orbitals of the paired combined symmetry required to
result in the determined total symmetry. To prevent double counting, there are considered to be
no combinations where the first index is larger than the second index. A pair of symmetries are
chosen using binary searching as described before, weighted towards the symmetries with the most
available choices.

Two orbitals, a, b, with the corresponding symmetries, are then picked in the same way as the
orbital was selected for single excitations (although the weighting terms must now consider the
effects of both source orbitals). When choosing orbital b, if it comes from the same symmetry
category as orbital a the relevant elements must be adjusted in the cumulative list.

For calculating the probabilities, the only duplication of generating the same determinant is for
the case when both orbitals have the same spin and symmetry. This must be accounted for in the
generation probability.

42

2.7 Determinant data storage

There are two main locations where blocks of information concerning particles associated with
determinants are stored.

2.7.1 Transmitted data

This concerns data that will be (or could be) transmitted between different processors. Essentially
this includes persistent information that is generated by the excitation generator. Combined, this
information forms the bit representation of a determinant.

All data access should be through the getter and setter functions in the bit_reps module (BitReps.F90),
with the exception of the orbital representation which may be manipulated directly as it will always
be first. There are general encode_bit_rep and extract_bit_rep routines which package and extract
all of the relevant information, as well as specific accessors.

In most of the code the encoded values for specific determinants are referred to as ilut, standing
for “Integer Look-Up Table” which relates to the orbital representation.

The packaging of this data varies substantially between different compiler and runtime configurations.
For example, integer runs on 64-bit machines co-opt some of the additional bits in the storage of
the signed particle counts to store the flags. It is essential that no attempt is made to access the
data in this array direcly.

The representation of each determinant is of dimensions 0:nIfTot, that is of length nIfTot+1. Unusually
for an array in Fortran it is a 0-based index. The component of the overall representation required
to uniquely determine one site is 0:nIfDBO (DBO stands for DetBitOps), which includes the orbital
description and any CSF descriptiors.

Each of the components of the representation has a nIf* (Number of Integers For) and nOff* (offset
of) value. These should not be used directly unless adding data to this representation.

• Orbital description
Determinants are stored by a bit-representation of the choice of orbitals to construct their
Slater Determinants from. This representation is of length 2M , i.e. the same as the number
of available spin-orbitals. An occupied orbital is represented with a 1, and a vacant orbital by
a 0.

This representation can be accessed directly. To simplify things, various macros are available.
The macros IsOcc and IsNotOcc test the occupancy of particular orbitals, and the macros set_orb
and clr_orb modify it without requiring the developer to worry about the data representation.

To decode the bit representation of the orbitals into the natural orbital representation use the
decode_bit_det routine. Equivalently, the EncodeBitDet generates the orbital bit representation
from the natural integer version.

• CSF descriptors
If CSF descriptor labels are required, they are stored here.

• Signed particle count
The representation of the coefficient, or “sign” of the determinant is the primary value which
is evolved during an FCIQMC simulation.

These values are represented by an array of real(dp) coefficients of length lenof_sign. In a
standard simulation this length is unity, but for complex walkers two values are used and the
double-run code uses extras.

These values can be used via the routines extract_sign and encode_sign. The specific elements
of the sign array can be accessed by extract_part_sign and encode_part_sign. If all particles are
to be removed the routines nullify_ilut and nullify_ilut_part can be used.

43

• Flags
Any number of flags may be associated with a particular site. A current full list may be
found in the file bit_rep_data.F90. The most commonly used flags are the flag_is_initiator
and flag_parent_initiator flags — be aware that these are different names for the same thing
(depends if considering particles in the main or spawned lists).

There is a pseudo-flag, flag_negative_sign, that only exists to help combining the representation
of the coefficients and flags. It should never be used directly outside of the representation
manipulation routines.0

These flags may be tested using the test_flag and set_flag routines referencing the specific
flag desired from the above list.

Further, then entire set of flags may be extracted or stored using the extract_flags and
encode_flags routines. Once they have been extracted, they may be examined and manipulated
with the btest, ibset and ibclr in the same way as the set and test functions above. A special
routine clear_all_flags exists for resetting the flag status.

It is extremely important that the flags element of the bit representation is not accessed
directly.

2.7.2 Locally stored data

This concerns information that will never be transmitted. All of this information is either used in
tracking the status of an occupied determinant, or for values that could in principle be regenerated
when required but are stored for optimisation.

All data access should be through the get_* and set_* routines found in the module global_det_data.

This data is stored in the global array global_determinant_data, but this array should not be accessed
directly! The location of data within this array is determined by the initialisation routine in the
module global_det_data, and depends on the calculation being performed.

The data currently stored in this array are

The diagonal Hamiltonian matrix element for the determinant (diagH),

The average signed occupancy of the determinant (av_sgn, only for RDMs).

The iteration on which determinants became occupied, (iter_occ, only for RDMs) and

The moment in imaginary time on which the (contiguous) occupation of this determinant began
(tm_occ, only with experimental initiators).

2.8 Transcorrelated integrals

The usage of the transcorrelated approach for ab-initio systems requires us to include 3-body
interactions, that come with 6-index integrals to be handled by NECI, as well as triple excitations to
be generated. The triples excitation generator is uniform and is located in tc_three_body_excitgen.F90,
while the handling of the 6-index integrals is done by the LMat_class.F90 (for the storage and reading
of integrals) and the LMat_mod.F90 (for getting matrix elements).

When reading 6-index integrals, they can either be read from an ASCII formatted file, or an HDF5
file. When reading them from an ASCII file, the file has to be formatted in a general FCIDUMP
fashion, containing all non-zero integrals Labc

ijk in the format
<integral > i j k a b c

where i, j, k are the indices of the orbitals to excite from and a, b, c those of the orbitals to excite
to. No further information is required in the file. The default filename is TCDUMP.

44

When reading the 6-index integrals from an HDF5 file, all data is required to be contained in
a group called tcdump, containing an attribute named nInts containing the number of non-zero
integrals, and two datasets called values and indices, containing the values of the non-zero 6-index
integrals and their indices. The indices dataset has to be of 6 times the size than the values dataset,
each group of 6 indices is attributed to one value (in storage order).

3 Index Conventions

There are two main conventions in the quantum-chemistry community to index two-electron integrals
which also determines how to write the matrix elements.

For a given first quantised two-electron operator gc(x1, x2), we can define integrals over the orbitals
φ using the so called chemist’s notation gP QRS or the physicist’s notation UP RQS by:

gP QRS = UP RQS =
∫ ∫

φ∗P (x1)φ∗R(x2)gc(x1, x2)φQ(x1)φS(x2) dx1dx2 . (1)

With these integrals we can write the second-quantised two electron operator in both notations as:

ĝ =
∑

P QRS

a†Pa
†
RaSaQgP QRS =

∑
P QRS

a†Pa
†
RaSaQUP RQS (2)

Typical textbooks that assume the chemist’s notation are the purple book[1] or Szabo-Ostlund[2].

The FCIDUMP file that transfers the electronic integrals from Molpro or Molcas to NECI assumes the
chemist’s notation.

Internally NECI uses the physicist’s notation, i.e. the function get_umat_el that returns the stored
two-electronic integrals uses the indexing of UP RQS . (Which is also why it is called umat in the first
place.)

If we write a double excitation with second quantised operators, we have the following commutation
relation:

a†Pa
†
RaSaQ = −a†Pa

†
RaQaS = −a†Ra

†
PaSaQ (3)

to remove any ambiguity about the sign we assume P < R and S > Q and call this a canonical
excitation.

In NECI any excitation of rank n is represented by a 2× n matrix, where the first row contains all
the source indices (particles which are to be annihilated) and the second row all target indices
(particles which are to be created).

A canonical excitation a†Pa
†
RaSaQ, (P < R ∧Q < S) in NECI is given by a matrix, where each row is

ascendingly sorted. [
src1 src2
tgt1 tgt2

]
=
[
Q S
P R

]
, src1 < src2, tgt1 < tgt2 (4)

This means that the operator, i.e. the matrix elements in NECI, is given by:

ĝ =
∑

P QRS

a†Pa
†
RaSaQgP QRS =

∑
P QRS

a†Pa
†
RaSaQUP RQS =

∑
tgt†1tgt†2src2src1Utgt1tgt2src2src1

(5)

45

Bibliography

[1] Trygve Helgaker, Poul Jørgensen, and Jeppe Olsen. Molecular electronic-structure theory. en.
Chichester ; New York: Wiley, 2000.

[2] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory. First. Mineola: Dover Publications, Inc., 1996.

46

	Working in NECI
	Code conventions
	Comments and documentation
	Review guidelines
	Don't Repeat Yourself (DRY)
	Procedure pointers (function pointers)

	Don't optimise prematurely
	Let the compiler help you
	Using CTAGS with VIM

	Tracking memory usage
	Code templating
	How it works
	Overall structure
	Configuration names and substitution
	Variable substitution
	The supermodule
	Optional parameters and lines of code
	Manual renaming of routines
	Examples

	Testing
	Adding a new test
	Unit tests

	Interfacing C (and C++) code
	Debugging tips
	Build configurations
	ASSERT statements are your friend
	Learn to use your tools
	Machete Debugging
	fcimcdebug 5
	Look at the git logs

	Guide to specific code in NECI
	Important modules and common (global) variable names
	Inexplicable names and anachronisms

	Parallelism
	Usage
	Important variables
	Implementation

	Shared memory
	How to use shared memory provisions
	Quirks and limitations
	How it works

	Integral retrieval
	FCIDUMP files
	Generation on the fly
	Nested schemes
	Fixed Lz and complex orbitals
	Further schemes

	Hamiltonian matrix element evaluation
	Different ways to obtain Matrix elements

	Excitation generation
	Interface
	Symmetry handling
	Manipulating determinants, and bit representations
	Data storage
	Re-use and rescaling of random numbers
	Timestep selection and other control parameters
	Testing excitation generators
	How this interacts with HPHF functions
	The uniform selection excitation generator
	The weighted excitation generator

	Determinant data storage
	Transmitted data
	Locally stored data

	Transcorrelated integrals

	Index Conventions

