
Using NECI

Contents
1 Using NECI 2

1.1 Getting the Code . 2
1.1.1 BitBucket Repository Access . 2

1.2 NECI Installation . 2
1.3 HDF5 . 3
1.4 Documentation . 4
1.5 Basic NECI Tutorial . 4

1.5.1 Anatomy of an Input File . 5
1.5.2 Running NECI . 6
1.5.3 Checking Convergence and Analysing Results 7
1.5.4 Continuing a NECI Calculation . 11
1.5.5 Final Steps . 13

1.6 Calculation inputs . 13
1.6.1 SYSTEM Block . 14
1.6.2 CALC Block . 20
1.6.3 INTEGRAL Block . 31
1.6.4 Development keywords . 31
1.6.5 KP-FCIQMC Block . 31
1.6.6 REALTIME Block . 33
1.6.7 LOGGING Block . 34
1.6.8 FCIMCStats output functions . 37

1.7 Output files . 37
1.7.1 FCIMCStats . 38

1.8 Trial wave functions . 40
1.9 Sampling excited states . 40
1.10 Davidson RAS code . 41
1.11 Performing error analysis . 41
1.12 Using the NECI pylib . 42
1.13 Additional Reading with Technical Details . 43

1

1 Using NECI

Here you will find instructions on how to use NECI for FCIQMC calculations. We start with
installation instructions, then give a quick overview in the form of a simple tutorial, and then dive
into more detail on the individual keywords and capabilities of NECI. See the sidebar (if on the
website) for navigation between sections.

If you use NECI, please be sure to cite Ref [7].

1.1 Getting the Code

There are two git repositories for NECI. The stable release is available publicly on github, here.
The developer version is on a private repository on bitbucket, for which you need to be invited
to see. The Github version is not updated as frequently, so if you wish to use the latest methods,
contact the developers.

1.1.1 BitBucket Repository Access

To gain access, contact one of the repository administrators [Oskar Weser (o.weser@fkf.mpg.de) and
Werner Dobrautz (w.dobrautz@fkf.mpg.de)] who will invite you. If you already have a bitbucket
account let the repository administrators know the email address associated with your account.

You will receive an invitation email. Please accept this invitation, and create a bitbucket account
as prompted if necessary.

To gain access to the NECI repository, an ssh key is required. This can be generated on any linux
machine using the command1

ssh - keygen -t rsa -b 2048

This will create a private (~/.ssh/id_rsa) and a public key file (~/.ssh/id_rsa.pub).

The private key must be kept private. On the bitbucket homepage, go to account settings (accessible
from the top-right of the main page), and navigate to “SSH keys”. Click “Add key” and add the
contents of the public key. This will give you access to the repository.

You can now clone the code into a new directory using the command
git clone git@bitbucket .org: neci_developers /neci.git [target_dir]

1.2 NECI Installation

Installation of NECI requires2

• git,
• cmake 3.12 or newer,
• BLAS/LAPACK,
• MPI 3,
• a Fortran compiler supporting Fortran 2003 features, and
• HDF5 (is optional, but strongly recommended and has to be explicitly switched off).

To get started, we must first clone the repository, with
git clone https :// github .com/ ghb24 / NECI_STABLE .git

for the public release, or
1‘ssh-keygen‘ can also generate DSA keys. Some ssh clients and servers will reject DSA keys longer than 1024

bits, and 1024 bits is currently on the margin of being crackable. As such 2048 bit RSA keys are preferred. Top
secret this code is. Probably. Apart from the master branch which hosted for all on github. And in molpro. And
anyone that wants it obviously.

2If you are on a cluster, you may need to run a command similar to ‘module load ifort mpi.intel‘.

2

https://github.com/ghb24/NECI_STABLE
mailto:o.weser@fkf.mpg.de
mailto:w.dobrautz@fkf.mpg.de

git clone https :// < username > @bitbucket .org/ neci_developers /neci.git

for the developer release (replace <username> with your bitbucket username). The directory of this
repository will be referred to as “your_code_directory”.

Next, create a directory (let’s call it “your_build_directory”), then run cmake and then make:
mkdir build
cd build
cmake -DENABLE_HDF5 =ON -DENABLE_BUILD_HDF5 =ON ${ your_code_directory }
make -j

NOTE
If you are making without HDF5, then set the option -DENABLE_HDF5=OFF instead.

Sometimes it is necessary to pass in the desired MPI compilers. In particular if several MPI
implementations are availabe on the system, then cmake might pick up the wrong ones. To explicitly
select the correct MPI pass
-DCMAKE_Fortran_COMPILER =... -DCMAKE_C_COMPILER =... -DCMAKE_CXX_COMPILER =...

with appropiate paths to cmake. In the case of GNU compilers that are already in your path it
would look like this:
-DCMAKE_Fortran_COMPILER =` which mpifort ` \
-DCMAKE_C_COMPILER =` which mpicc ` \
-DCMAKE_CXX_COMPILER =` which mpicxx `

If you want to link against an existing HDF5 library instead of rebuilding it everytime, then follow
the instructions in the next section on how to correctly compile HDF5 with parallel support and set
HDF5_ROOT as environment variable pointing to the installation directory of HDF5. A full command
would look like this:
HDF5_ROOT =~/ lib/hdf5 -1.8.20 _gfort_mpi \
cmake -DENABLE_HDF5 =ON \
-DCMAKE_Fortran_COMPILER = mpifort \
-DCMAKE_C_COMPILER = mpicc \
-DCMAKE_CXX_COMPILER = mpicxx ~/ code/neci

1.3 HDF5

You may also need to build HDF5 yourself as a shared library, which speeds up the compilation
process, since HDF5 does not have to be rebuilt for every new project.

NOTE HDF5 should be built with the same set of compilers as NECI.

In this case, download and extract the program from the HDF5 group website (download link for
v1.12), then build with parallel IO and Fortran Support enabled. You may replace the compilers if
you wish, for example use GNU mpifort or Intel mpiifort.

The cmake command is:
cd your_build_directory
HDF5_SRC = # The HDF5 source
HDF5_ROOT = # Where it should be installed

cmake \
-DCMAKE_INSTALL_PREFIX :PATH=${ HDF5_ROOT } \
-DHDF5_ENABLE_PARALLEL :BOOL=ON \
-DHDF5_BUILD_FORTRAN :BOOL=ON
-DCMAKE_Fortran_COMPILER :PATH=` which mpifort ` \
-DCMAKE_C_COMPILER :PATH=` which mpicc ` \
${ HDF5_SRC }

make -j
make install

The configure command for older HDF5 versions is:

3

https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.12/hdf5-1.12.2/src/hdf5-1.12.2.tar.gz
https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.12/hdf5-1.12.2/src/hdf5-1.12.2.tar.gz

cd your_build_directory
cd your_build_directory
HDF5_SRC = # The HDF5 source
HDF5_ROOT = # Where it should be installed

FC= mpifort F9X= mpifort CC= mpicc ${ HDF5_SRC }/ configure \
--prefix =${ HDF5_ROOT } --enable - fortran --enable - fortran2003 --enable - parallel

make
make install

where you define HDF5_SRC and HDF5_ROOT appropriately. Then, before running cmake for NECI, run
export HDF5_ROOT = # where HDF5 was installed in the previous step

and proceed with the NECI installation as before,
mkdir build
cd build
cmake -DENABLE_HDF5 =ON ${ your_code_directory }
make -j

1.4 Documentation

If you wish to generate documentation for NECI, based on Ford, then when you build with CMake,
you must also include the flag -DENABLE_DOC=ON, for example
mkdir build
cd build
cmake -DENABLE_DOC =ON ${ your_code_directory }
make -j doc

Requirements to produce the docs are:

• pandoc,
• latexmk,
• pdflatex,
• biber, and
• a working internet connection (only for the first time, in order to get a custom-build of Ford).

This will not only generate this documentation in the form of a PDF, but also as a website, having in
addition to the information in the PDF also automatically generated documentation from comments
in the source files.

1.5 Basic NECI Tutorial

FCIQMC is not a blackbox method and as such may be daunting to first approach. In addition,
there are many variants which excel in different kinds of problems. NECI has tools to make working
with FCIQMC an easier task. While NECI is written predominantly in Fortran, in order to use it
you need not know any programming language. In this tutorial, we assume an at least elementary
understanding of the FCIQMC algorithm.[3]

The goal of this tutorial is to provide a practical, brief supplement to the full NECI user’s guide,
which serves us a much more detailed reference. We will use NECI to calculate the ground-state
energy of the Nitrogen dimer in a (6,6) active space. We use the equilibrium geometry, 2.074 bohr
radii.

NOTE
For this problem, FCIQMC will actually underperform compared to conventional Davidson
CI. In addition, Davidson CI has no stochastic error (unlike FCIQMC), so it is strongly
preferred for this problem. However, this is a relatively cheap example through which to get
comfortable with NECI and FCIQMC. FCIQMC has better scaling behaviour, can be better
parallelised, and benefits from sparsity. If you go to (e.g.) a (20, 20) CAS then FCIQMC
outshines Davidson, which is not a feasible method for problems of this size.

4

https://github.com/Fortran-FOSS-Programmers/ford
index.html

First, we must generate the FCIDUMP file which contains the information about 1- and 2-electron
integrals. NECI is a solver for the CI-problem and not a standalone quantum chemistry suite, and
cannot do this itself. For this, choose any program that can generate these (e.g. PySCF, Molpro,
Molcas). This has been done for you, and you may download the file here.

1.5.1 Anatomy of an Input File

In order to run a NECI calculation, we must create an input file. Here is an example for the
FCIDUMP file provided, called n2_neci.inp.
comments are given like this

simple N2 FCIQMC calculation
for more complex FCIQMC variations , see the keywords for additional options
such as the Hubbard model , transcorrelated options , or GAS -CI

title

read integrals from FCIDUMP
system read

electrons 6
nonuniformrandexcits pchb

endsys

calc
nmcyc 10000
for reproducibility
seed 8

totalWalkers 50000
tau 0.01 search

use the initiator method
truncinitiator
addtoinitiator 3

methods
method vertex fcimc

endmethods

endcalc

logging
hdf5 -pops

endlog

end

NOTE
these keywords are case insensitive.

All these keywords (and plenty more) are explained in the next section. For now, let’s break down
the structure of the input file.

• Comments can be added in the code with #. (A deprecated comment symbol found in legacy
inputs is (. Please use #.)

• First, the actual input starts with title, which is mandatory, and must also end with end
(i.e. wrap the program in this block).

• Next, we have the system block, which is also mandatory.
– The system keyword has a mandatory argument which comes directly after it on the same

line. Here, we use read (as in system read), as we are doing the FCIQMC calculation from
an FCIDUMP file.

– We must also specify the number of electrons in the system, with the electrons keyword,
followed by the number of electrons. Since we are doing a (6,6) calculation, we have
electrons 6.

– We must terminate the system block with the endsys keyword so that NECI knows to
stop looking for system keywords.

5

03_calculation_inputs.html

• Then, we have the mandatory calc block, which is necessarily terminated with endcalc. This
block in particular has many options and potential keywords; here we use only a small subset.
– We specify the number of iterations the FCIQMC calculation will do, with nmcyc. Specif-

ically, we specify 10000 iterations.
– We also specify a seed with the seed keyword. FCIQMC is a randomised algorithm, and

setting the seed simply ensures we get the same result every time (useful for testing or
checking stochastic effects, for example). This keyword is optional.

– We also must include the totalWalkers keyword, followed by the target number of walkers.
Once this number is reached, NECI will enter variable-shift mode; that is, the shift
will vary so as to keep the number of walkers constant. We wish to have a statistically
significant number of iterations where the number of walkers is roughly constant, as we
will see. In this case, we have totalWalkers 50000.

– We must also include tau which is the size of the time step per iteration. The additional
keyword search is optional but useful for stability.

– Another form of FCIQMC is i-FCIQMC, which uses “initiator” walkers to speed up the cal-
culation.[5] This is optional, but generally recommended. Presence of the truncinitiator
keyword in the calc block indicates i-FCIQMC, and addToInitiator 3 means that any
determinant with a population >= 3 will become an initiator.

– Finally, as a mandatory subblock inside the calc block, we have the methods subblock,
which necessarily ends with endmethods. Here, we simply specify what kind of calculation
to do. We choose method vertex fcimc, which simply means to run an FCIQMC calculation.

• Finally, we have an optional logging block which ends with endlog. By default, NECI will
keep track of the population of walkers in a “POPSFILE”, which is by default ASCII. Here,
we wish to have an HDF5 POPSFILE which is generally better-performing. To do this, inside
the logging block we have the hdf5-pops keyword.

NOTE
You cannot use the hdf5-pops keyword if you did not build NECI with HDF5.

1.5.2 Running NECI

After building, the NECI executable will be in path/to/neci/build/bin/neci (e.g. if I installed NECI
in my home directory, it would be ~/neci/build/bin/neci).

NECI can be run directly as any executable:
path/to/neci/ build /bin/neci n2_neci .inp

but parallel execution is usually desired. To run the above input file in parallel, we must use the
respective MPI commands (mpirun, mpiexec, etc.)
mpirun -np 4 path/to/neci/ build /bin/neci n2_neci .inp

where you can replace the 4 with however many processors with which you want to run (4 being a
very modest number). This will print a lot to standard output, which you may wish to capture, e.g.
mpirun -np 4 ~/ neci/ build /bin/neci n2_neci .inp > n2_neci .out

NOTE
If you made a mistake somewhere in your file (for example, a typo), NECI tries to give
useful error messages. However, MPI can sometimes interferes with this. Before doing a full
calculation, you may want to run simply without mpirun, e.g. simply
~/ neci/ build /bin/neci n2_neci .inp > n2_neci .out
If this starts to run without an error, then you may stop it and run with mpirun.

6

NOTE
NECI has a useful utility to dynamically change variables while it is running. To do this,
create a file called CHANGEVARS, and input whatever keyword you wish to change, e.g. if you
think nmcyc 10000 is too small, enter into CHANGEVARS the text nmcyc 20000 (or whatever else).
Then, the value will be updated in the next iteration of NECI. This is helpful for interacting
with a running simulation.

WARNING
It is generally not advisable to terminate a program with CTRL+C. Instead, use the above
CHANGEVARS trick, to create a soft exit. Simply open/create CHANGEVARS, type in SOFTEXIT and
save. Alternatively, you can do this in one line on the terminal with
echo SOFTEXIT > CHANGEVARS

This calculation should produce a few other files in the directory, namely:

• popsfile.h5 (or POPSFILE if you did not include hdf5-pops)
• INITATORStats
• FCIMCStats

The popsfile will be very useful in case we wish to continue running the simulation. FCIMCStats has
columns of useful data, which we will explore now.

1.5.3 Checking Convergence and Analysing Results

The file FCIMCStats has several useful columns which you will want to plot to ensure conver-
gence. To do this in one line, there is a convenience script here, which is run with gnuplot via
gnuplot plot_fcimcstats.plt and will output plots of the most useful columns to a new plots/ directory.
Your results should look something like this:

1.

7

/scratch/jenkins/jobs/existing_branch_doc/workspace/build_config/gfortran-doc/build/documentation/work_dir/media/N2_neci_files/plot_fcimcstats.plt

2.

3.

8

4.

5.

9

6.

Plot (1) is the most immediately useful plot, as it gives you a quick estimate of the total energy
from the calculation (namely, you can see we have around 108.98 Hartree). For all of these, we
expect variable behaviour until the total walkers (plot (2)) reaches the target total walkers (as per
our input file, 50000 in this case). Then, we want all six of these plots to roughly plateau, as they
all do above. Furthermore, FCIQMC has a built-in consistency check whereby the energy can be
calculated in two independent ways: namely, by the shift (which is only updated once the target
number of walkers is reached) and the projected energy. These are plotted on top of each other in
plot (4). As we see, they agree once we have run for a long enough time.

Once we are confident that all these plots exhibit plateaus for sufficiently large step numbers, we
proceed with an error analysis. However, since FCIQMC calculations generally have correlated
data, we cannot use standard error analysis, and here we use blocking analysis.[6] A script to do
blocking analysis is included in the NECI repository: path/to/neci/utils/blocking.py.

Running the blocking analysis as
path/to/neci/ utils / blocking .py -p 'plots / blocking .png ' -f <numiter > -d24 -d23 -o/ FCIMCStats > stats

will output a blocking plot to the plots subdirectory, starting after <numiter> iterations, which should
be chosen at a point where the plateaus in plots (5) and (6) (i.e. the numerator and denominator
for the error estimate) are both stable. In this example, we might choose <numiter> to be 9000.
Running this, we get the following plot.

10

Consisting of only three points, and having no plateau, this indicates that we have not yet converged
our FCIQMC calculation reliably. That is, if all the above 6 plots indicate convergence but the
blocking analysis has no plateau (as in this example), it is most likely that you must continue the
calculation to get more data.

1.5.4 Continuing a NECI Calculation

In order to continue a NECI calculation (for example, if like in this example you have done a
calculation only to find you do not have enough data), simply take the same NECI input as above,
but add into the calc the readPops command, which indicates that NECI must read the popsfile
previously created. You may also wish to increase the number of iterations nmcyc, e.g.
title

...
calc
readPops
nmcyc 70000
...

end

This will add data into the previous FCIMCStats. After you have run this the same way as
described above, repeat the blocking analysis. The plots will all still have well-defined plateaus, but
the blocking analysis will result in something like this:

11

This time we see a clear plateau. The last point in this example indicates an excessively large
blocking length (resulting in the estimate of the standard having too much noise). This is expected
behaviour (but only in the blocking analysis; not in the other plots); what is important is that
we see a plateau before the onset of this noise. Now, we may be more confident in our FCIQMC
calculation. Above, we captured the output of the blocking script into a file called stats. In this
example, the contents of that file is below:
of blocks mean (X_24) std.err. (X_24) std.err.err. (X_24) mean (X_23)
std.err. (X_23) std.err.err. (X_23) cov(X_23 ,X_24) mean (X_24/X_23) std.err. (X_24/X_23)
722 -670.049359811 1.99777332e -01 5.26094278e -03 37244.1867452
9.82441101 e+00 2.58716360e -01 -1.32220e+03 -0.017990709917 1.946944746518e -06
361 -670.049359811 2.68876787e -01 1.00204462e -02 37244.1867452
1.36690165 e+01 5.09414168e -01 -1.28123e+03 -0.017990709917 1.911297631965e -06
180 -670.055219406 3.59855874e -01 1.90189739e -02 37244.4116806
1.86756159 e+01 9.87036972e -01 -1.18406e+03 -0.017990758591 2.026001990428e -06
90 -670.055219406 4.67644101e -01 3.50514073e -02 37244.4116806
2.45252068 e+01 1.83824197 e+00 -1.01830e+03 -0.017990758591 2.124344681041e -06
45 -670.055219406 5.83345340e -01 6.21848221e -02 37244.4116806
3.08250668 e+01 3.28596316 e+00 -8.00932e+02 -0.017990758591 2.312712518500e -06
22 -670.085373646 7.34544351e -01 1.13342654e -01 37245.7631108
3.89686474 e+01 6.01299283 e+00 -6.25139e+02 -0.017990915414 2.494555852939e -06
11 -670.085373646 7.12029706e -01 1.59214682e -01 37245.7631108
3.79742226 e+01 8.49129431 e+00 -2.96473e+02 -0.017990915414 1.687704717679e -06
5 -669.988620008 6.61525494e -01 2.33884581e -01 37240.7990625
3.68826395 e+01 1.30399822 e+01 -1.21293e+02 -0.017990715475 1.907691051811e -06
2 -670.428455433 7.74026533e -02 5.47319410e -02 37267.1565039
9.84779297 e+00 6.96344119 e+00 -1.52449e+00 -0.017989793650 2.676810345979e -06

We wish to take the energy from the first row here in the second-to-last column and its corresponding
uncertainty in the last column, i.e.:
-0.017990709917 +/- 1.946944746518e -06

This is then our estimate for the correlation energy. To get the total energy, we must also add the
reference energy, which can be found in the standard output of NECI (we called it n2_neci.out):
Reference Energy set to: -108.9606713172

12

(search for “Reference Energy”). You’ll also find estimates for the correlation energy in the output
file. However, this is not as trustworthy as doing a full blocking analysis.

1.5.5 Final Steps

To be completely sure of our FCIQMC calculation, we must again continue from the popsfile with
the readPops keyword, but change the number of walkers. The goal here is to verify that we have a
sufficient number of walkers, and that we are converged with respect to the total number of walkers.
Thus, to be really sure of our energy calculation, we must repeat the FCIQMC calculation but
varying the number of walkers. The easiest way to do this is to restart from the previous popsfile
and increase the total number of walkers. However, since the previous total number of walkers has
already been reached, NECI is in variable-shift (or constant-walker-number) mode, and hence we
need to tell NECI vary the number of walkers again.

To do this, we keep the readPops keyword and add the keyword and add the walkContGrow keyword
into the calc block. We will, of course, also want to increase the total number of walkers (say,
to 100000), and from our previous experience above we know we need more data so we can also
increase the number of iterations, i.e.
title
...
calc
continue on from previous calculation
readPops
allow growth from previous calc
walkContGrow

nmcyc 100000
...
end

Repeat this as above, do the same convergence analysis as above. Note, however, that since the
number of iterations from which to start the blocking analysis (<numiter>) will be higher, as you
will see by checking the plots (this is just because NECI needs some time to increase the walker
number to the new target number and then stabilise).

Once you have done that, you may be much more confident about your calculated correlation
energy.

Congratulations on your first FCIQMC calculation with NECI. The software has many more
sophisticated options and can be used for bigger systems. The rest of this documentation discusses
these in some details, though not in a tutorial format.

1.6 Calculation inputs

The NECI executable takes one input argument, which is the name of an input file containing
the instructions for carrying out the calculation. The input file is organized in blocks, with each
block being started and terminated by a dedicated keyword. Each block can contain a number of
keywords to specify options. Here, a list of the blocks and their respective keywords is given.

The first line of the input is always title, the last line is always end.

Some keywords are mandatory, those are marked in red and are given at the beginning of the
description of each paragraph. Then come recommended options, marked in blue, followed by
further options given in black.

Keywords which are purely for debugging purposes and only interesting for developers are marked
in green.

Comments can be added in the code with #. (A deprecated comment symbol found in legacy inputs
is () Line continuation is achieved with \. (A deprecated line continuation string found in legacy
inputs is +++.)

13

1.6.1 SYSTEM Block

The SYSTEM block specifies the properties of the physical system that is considered. The block
starts with the system keyword and ends with the endsys keyword.

• system
Starts the SYSTEM block. Has one mandatory additional argument to specify the type of
the system. The options are

– read
Read in the integrals from a FCIDUMP file, used for ab-initio calculations.

– FCIDUMP-name
Specify the name of the FCIDUMP file. Defaults to FCIDUMP.

– hubbard
Uses the Hubbard model Hamiltonian.

∗ k-space
In the momentum-space basis (beneficial for low U/t)

∗ real-space
In the real-space basis (beneficial for large U/t)

– ueg
Uses the Hamiltonian of the uniform electron gas in a box.

• endsys
Terminates the SYSTEM block.

• electrons n, nel n
Sets the number of electrons to n

• spin-restrict [m]
Sets the total Sz quantum number to m

2 . The argument m is optional and defaults to 0.

• hphf s
Uses a basis of (anti-)symmetric combinations of Slater determinants with respect to global
spin-flip. s = 0 indicates anti-symmetric combinations, s = 1 symmetric combinations. This
is useful to exclude unwanted spin configurations. For example, no triplet states can occur for
hphf 0.

• guga S
Activates the spin-adapted implementation of FCIQMC using CSFs (more precisely Gel’fand-
Tsetlin states) and the graphical Unitary Group Approach (GUGA). The total spin S must
be specified in multiples of ~/2. So S = 0 is a singlet, S = 1 a doublet S = 2 a Triplet and so
on. This keyword MUST be combined with certain nonuniformrandexcits input as described
below! Also it is not allowed to use this keyword with the spin-restrict or HPHF keyword. And
the number of electrons must allow the chosen spin (even number for Singlet,Triplet,etc. and
odd for Doublet,Quartet,. . .). Additionally the choice of a reference determinant via the
definedet keyword of the CALC input block (described below) is necessary in most cases, as the
automatic reference state setup is not always working in a CSF-based implementation.

• sym kx ky kz s
Specifies the symmetry of the target state. The first three arguments set the momentum
(kx, ky, kz) and are only used for Hubbard and ueg-type systems, the last argument s specifies
the irrep within d2h and is only used for ab-initio systems. Note that the symmetry label is
zero-indexed, so A1g corresponds to 0.

• lztot
Set the total Ls quantum number. Has one mandatory additional argument, which is the
value of Ls.

14

• useBrillouinTheorem
Assume that single excitations have zero matrix elements with the reference. By default, this
is determined automatically.

• noBrillouinTheorem
Always assume that single excitations have nozero matrix elements with the reference.

• umatEpsilon ε
Defines a threshold value ε below which matrix elements of the Hamiltonian are rounded to 0.
Defaults to 10−8.

• diagonaltmat
Assume the kinetic operator is diagonal in the given basis set.

• noSingExcits
Assume there is no coupling between single excitations in the Hamiltonian.

• rohf
Use restricted open-shell integrals.

• read_rofcidump
Read the integrals from a ROFCIDUMP file.

• spinorbs
Uses spin orbitals instead of spatial orbtials for addressing the integrals. This can be used if
the integrals depend on the spin of the orbitals.

• molproMimic
Use the same orbital ordering as molpro, mimicking the behaviour of calling NECI from
molpro. First nelec/2 orbitals sorted by diagonal elements of the Fock matrix are considered
to be occupied, and the rest to be virtual. Each sector is then sorted separately by symmetry
labels.

• complexOrbs_realInts
The orbitals are complex, but not the integrals. This reduces the symmetry of the 4-index
integrals. Only affects kneci and kmneci calculations.

• complexWalkers-realInts
The integrals and orbitals are real, but the wave function shall be complex. Only affects kneci
and kmneci calculations.

• system-replicas n
Specifies the number of wave functions that shall be evolved in parallel. The argument n is
the number of wave functions (replicas). Requires mneci or kmneci.

• nonhermitian [1-body] [2-body]
Specifies that the input is a non-Hermitian Hamiltonian, but makes no further assumptions.
By default it assumes both 1- and 2-body non-Hermiticity. However, it has two optional
keywords, if 1-body is given, only the 1-body components of the Hamiltonian are non-Hermitian;
if 2-body is given then only the 2-body components are non-Hermitian. Note that in the case
of transcorrelation, only the 2-body component would be non-Hermitian; hence if you are
running a transcorrelated mean-field calculation, use nonhermitian 2-body.

• stoquastize
Stoquastize the Hamiltonian. This means that the off-diagonal elements of the original
Hamiltonian become negative without changing the magnitudes, i.e. Hstoq

ij = Hijδij −
|Hij |(1− δij).

1.6.1.1 Excitation generation options

• nonUniformRandExcits
Use a non-uniform random excitation generator for picking the move in the FCIQMC spawn

15

step. This can significantly speed up the calculation. Requires an additional argument, that
can be chosen from the following

– pchb
Generates excitations weighted directly with the matrix elements using pre-computed alias
tables. This excitation generator is extremely fast, while maintaining high acceptance
rates and is generally recommended when memory is not an issue. The keyword has to
be followed by either LOCALISED, DELOCALISED, or MANUAL.

With LOCALISED and DELOCALISED the fastest PCHB sampler is chosen automatically. Specify
DELOCALISED for Hartree-Fock like orbitals and LOCALISED for localised orbitals. With MANUAL
one can select the PCHB sampler themselves.

When selecting MANUAL, first the singles are specified. The precomputed weight is given by

SAI =
{
|hAI |+

∑
R |gAIRR − gARRI | I 6= A

0 else
(1)

Note that R runs over all spin-orbitals, not only the occupied. This makes the weighting
determinant-independent. The probabilites are then given by:

pPCHB
1 (I) =

∑
C S

C
I∑

CL S
C
L

pPCHB
1 (A|I) = SAI∑

C S
C
I

. (2)

Now we can sample weighted without guaranteeing (un-)occupiedness (pPCHB
1 (I)

or pPCHB
1 (A|I)), weighted with guaranteeing (un-)occupiedness (pPCHB

1 (I)|I∈Di or
pPCHB

1 (A|I)|A/∈Di
), or uniformly (puni

1 (I)|I∈Di or puni
1 (A|I)|A/∈Di

).

We will write fast, full, and unif for the three cases and separate the particle selection
from hole selelection with a colon. This means that e.g. unif:full corresponds to sampling
via puni

1 (I)|I∈Di
· pPCHB

1 (A|I)|A/∈Di
.

The possible specifications are one of the following unif:unif, unif:fast, unif:full,
full:full, or on-the-fly-heat-bath. Where on-the-fly-heat-bath uses the exact on-the-fly
calculated matrix element for weighting (which is slow).

After the singles the doubles are specified. The following weights are used for the doubles:

WAB
IJ =

{
|gAIBJ − gAJBI | I 6= J ∧A 6= B ∧ {I, J} ∩ {A,B} = ∅
0 else

(3)

and the probalities are given by:

pPCHB
2 (I) =

∑
LCDW

CD
IL∑

KLCDW
CD
KL

pPCHB
2 (J |I) =

∑
CDW

CD
IJ∑

LCDW
CD
IL

pPCHB
2 (A|IJ) =

∑
DW

AD
IJ∑

CDW
CD
IJ

pPCHB
2 (B|IJA) = WAB

IJ∑
DW

AD
IJ

.

(4)

Again we can combine different combinations of uniform, fast-, and fully-weighted
sampling. We will specify the selection for the first and second particle and then the
first and second hole. Again the particle and hole selections are separated by a :.

The possible particle selections are full-full (pPCHB
2 (I)|I∈Di

· pPCHB
2 (J |I)|J∈Di

),
unif-full (puni

2 (I)|I∈Di
· pPCHB

2 (J |I)|J∈Di
), unif-fast (puni

2 (I)|I∈Di
· pPCHB

2 (J |I)), and
unif-unif (puni

2 (I)|I∈Di
· punif

2 (J |I)|J∈Di
).

The possible hole selections are full-full (pPCHB
2 (A|IJ)|A/∈Di

·pPCHB
2 (B|IJA)|B/∈Di

) and
fast-fast (pPCHB

2 (A|IJ) · pPCHB
2 (B|IJA)).

The particle and hole selections can be freely combined among eather, e.g. unif-full:fast-fast.

An example input is:

16

nonuniformrandexcits pchb localised

An example input for manual specification is
nonuniformrandexcits pchb manual \

unif:full unif -full:full -full

– guga-pchb
Uses the pre-computed alias tables for the spin-adapted GUGA implementation. Needs
the guga keyword in the System block. If it is used in conjunction with the histogramming
tau-search, which is recommended for GUGA calculations in general, it automatically
sets more reasonable defaults than for the usual mol-guga-weighted excitation generation
option.

– nosymgen
Generate all possible excitations, regardless of symmetry. Might have a low acceptance
rate.

– 4ind-weighted
Generate exictations weighted by a Cauchy-Schwarz estimate of the matrix element.
Has very good acceptance rates, but is comparably slow. Using the 4ind-weighted-2 or
4IND-WEIGHTED-UNBOUND instead is recommended.

– 4ind-weighted-2
Generates excitations using the same Cauchy-Schwary estimate as 4ind-weighted, but uses
an optimized algorithm to pick orbitals of different spin, being faster than the former.

– 4ind-weighted-unbound
Generates excitations using the same Cauchy-Schwary estimate as 4-ind-weighted and
optimizations as 4ind-weighted-2, but uses more accurate estimates, having higher accep-
tance rates. This excitation generator has high acceptance rates at negligible memory
cost.

– pcpp
The pre-computed power-pitzer excitation generator [8]. Has low memory cost and scales
only mildly with system size, and can thus be used for large systems.

– mol-guga-weighted
Excitation generator for molecular systems used in the spin-adapted GUGA Approach.
The specification of this excitation generator when using GUGA in ab initio systems is
necessary!

– ueg-guga
Excitation generator choice when using GUGA in the UEG or k-space/real-space Hubbard
model calculations. It is mandatory to specify this keyword in this case!

– GAS-CI
Specify the actual implementation for GAS. Requires a GAS specification via the GAS-SPEC
keyword.

∗ PCHB
This is the default and the fastest implementation, if sufficient memory is available.
The double excitations work similar to the FCI precomputed heat bath excitation
generator but automatically exclude GAS forbidden excitations. The keyword has
two optional sub-keywords, SINGLES, DOUBLES which allow to tailor the algorithm for
your system. (The default choice is usually sufficiently fast.) With SINGLES one
can select the single excitation algorithm:

· PC-WEIGHTED
Use precomputed weighted singles, which is the default and recommended
sampling scheme. Read at Full CI PCHB for a deeper description. It allows the
same sampling schemes fully-weighted, weighted, and fast-weighted.

17

· PC-UNIFORM
This is the default. It chooses GAS allowed single excitations uniformly.

· ON-THE-FLY-HEAT-BATH
It chooses GAS allowed electrons weighted by their matrix element.

With doubles one can select the particle- and hole-selection algorithm for double
excitations. It is followed by particle-selection or hole-selection. Read at Full CI
PCHB for a deeper description. It allows the same sampling schemes.

An example input is:
nonuniformrandexcits GAS -CI PCHB \

singles pc - weighted weighted \
doubles particle - selection weighted \
doubles hole - selection fully - weighted

∗ DISCARDING
Use a Full CI excitation generator and just discard excitations which are not
contained in the GAS space. Currently PCHB is used for Full CI.

∗ ON-THE-FLY-HEAT-BATH
Use heat bath on the fly general GAS, which is applicable to any GAS specification,
but a bit slower than necessary for disconnected spaces.

∗ DISCONNECTED
Use the disconnected GAS implementations, which assumes disconnected spaces and
performs there a bit better than the general implementation.

• lattice-excitgen
Generates uniform excitations using momentum conservation. Requires the kpoints keyword.

• GAS-SPEC
Perform a Generalized Active Spaces (GAS) calculation and specify the GAS spaces.[13] It
is necessary to select the actual implementation with the GAS-CI keyword. It is possible to
use local, cumulative, or flexible constraints on the particle number. Local constraints define
the minimum and maximum particle number per GAS space. Cumulative constraints define
cumulative minima and maxima of the cumulative particle number. The flexible constraints
allow the user to list the allowed supergroups, i.e. the allowed distribution of particles among
the GAS spaces. The specification is first LOCAL or CUMULATIVE to define the kind of constraints
followed by the number of GAS spaces nGAS. The next items are nGAS rows with 3 numbers
which are the number of spatial orbitals and (cumulative) minimum and maximum number of
particles per GAS space ni, Nmin

i , Nmax
i . Finally the last row denotes for each spatial orbital

to which GAS space it belongs. Instead of 1 1 1 1 1 one can write 5*1. Two benzenes with
single inter-space excitation would be e.g. denoted as:
GAS -SPEC LOCAL 2

6 5 7
6 5 7
1 1 1 1 1 1 2 2 2 2 2 2

or
GAS -SPEC LOCAL 2

6 5 7
6 5 7
6*1 6*2

or
GAS -SPEC CUMULATIVE 2

6 5 7
6 12 12
6*1 6*2

In the given example the local and cumulative constraints are equivalent, but they are not
always!

The flexible constraints start with the keyword FLEXIBLE and require the number of GAS spaces
and supergroups nGAS nsg. The next nsg rows list the allowed supergroups. Again the last

18

row denotes for each spatial orbital to which GAS space it belongs. The previous example of
two benzene with single excitations would be
GAS -SPEC FLEXIBLE 2 3

6 6
5 7
7 5
6*1 6*2

It is possible to switch off the spin recoupling between different GAS spaces by appending
NO-RECOUPLING.

• OUTPUT-GAS-HILBERT-SPACE-SIZE
Optional keyword. If a GAS calculation is performed, then output the sizes of the CAS and
GAS Hilbert-Space sizes. Note that, depending on the GAS specifications, this operation can
be actually expensive, so it is not done by default.

1.6.1.2 Hubbard model and UEG options

• lattice type lx ly [lZ]
Defines the basis in terms of a lattice of type type with extent lx × ly × lz. lx and ly are
mandatory, lz is optional. type can be any of chain, star, square, rectangle, tilted, triangular,
hexagonal, kagome, ole.

• U U
Sets the Hubbard interaction strengh to U . Defaults to 4.

• B t
Sets the Hubbard hopping strengh to t. Defaults to -1.

• twisted-bc t1 [t2]
Use twisted boundary conditions with a phase of t1 2Π

x applied along x-direction, where x is
the lattice size. t2 is optional and the additional phase along y-direction, in multiples of 2Π

y .

• open-bc [direction]
Set the boundary condition in direction to open, i.e. no hopping across the cell boundary is
possible. direction is optional and can be one of X, Y or XY, for open boundary conditions
in x-, y- or both directions. If omitted, both directions are given open boundary conditions.
Requires a real-space basis.

• ueg-offset kx ky kz
Offset (kx, ky, kz) for the momentum grid used in for the uniform electron gas.

• bipartite-order [n]
Enables a bipartite ordering of bipartite lattice (chain, square for now) Has to be put before!
the lattice keyword. If an additional parameter n, which has to equal to the number of lattice
sites, is given an arbitrary orbital ordering can be given in the subsequent input line. (It has
to be n unique numbers from, 1 to n.) An example: bash bipartite 5 1 3 2 5 4

1.6.1.3 Transcorrelation options

• molecular-transcorr
Enable the usage of a transcorrelated ab-initio Hamiltonian. This implies the non-hermiticity
of the Hamiltonian as well as the presence of 3-body interactions. Requires passing the
3-body integrals in either ASCII or HDF5 format in a TCDUMP file, or tcdump.h5, respectively.
Enables triple excitation generation. When using this option, non-uniform random excitation
generator become inefficient, so using nonUniformRandExcits is discouraged.

• adjoint-calculation
Instead of calculating H, NECI solves for H†. Note in the case of transcorrelation, this is
equivalent to switching the sign of your Jastrow factor: J to −J .

19

• ueg-transcorr mode
Enable the usage of a transcorrelated Hamiltonian for the uniform electron gas. This implies
the non-hermiticity of the Hamiltonian as well as the presence of 3-body interactions. mode
can be one of 3-body, trcorr-excitgen or rand-excitgen.

• transcorr [J]
Enable the usage of a transcorrelated Hamiltonian for the real-space hubbard mode. This im-
plies the non-hermiticity of the Hamiltonian. The optional parameter J is the transcorrelation
parameter and defaults to 1.0.

• 2-body-transcorr [J]
Enable the usage of a transcorrelated Hamiltonian for the momentum space hubbard model.
This implies the non-hermiticity of the Hamiltonian as well as the presence of 3-body
interactions. The optional argument J is the correlation parameter and defaults to 0.25.

• exclude-3-body-ex
Disables the generation of triple excitations, but still takes into account 3-body interactions
for all other purposes.

• adjoint-replicas
For multiple replicas (mneci, system-replicas >=2) or a dneci run, evolves the left eigenvector
for the even replicas, while still evolving the right eigenvector for the odd replicas. This
gives access to stochastically independent |PsiR > and ΨL in the same simulation, for RDM
calculation e.g.

1.6.1.4 Spin purification

• sd-spin-purification J [truncate-ladder-operator, only-ladder-operator]
Use an adjusted hamiltonian H + JS2 for the dynamic to force antiferromagnetic ordering
and ensure pure spin-states in a Slater determinant (SD) basis.

One can add the optional keyword only-ladder-operator after J not to use the full S2 =
Sz(Sz − 1) + S+S− operator but a truncated version, which uses only the ladder operator
term S+S−.

One can add the optional keyword truncate-ladder-operator after J not to use the full S2 =
Sz(Sz − 1) + S+S− operator but a truncated version, which uses only the ladder operator
term S+S− and truncates it by removing its diagonal. This implies that the diagonal counting
of open shell α electrons is removed.

1.6.2 CALC Block

The CALC block is used to set options concerning the simulation parameters and modes of FCIQMC.
The block starts with the calc keyword and ends with the endcalc keyword.

• calc
Starts the CALC block

• endcalc
Terminates the CALC block

• time t
Set the maximum time t in minutes the calculation is allowed to run. After t minutes, the
calculation will end.

• nmcyc n
Set the maximum number of iterations the calculation is allowed to do. After n iterations,
the calculation will end.

20

• eq-cyc n
Set the number of iterations to perform after reaching variable shift mode. n Iterations after
entering the variable shift mode, the calculation will end. If both eq-cyc and nmcyc are given,
the calculation ends when either of the iteration limits is reached.

• seed s
Sets the seed of the random number generator to s. This can be used to specifically probe for
stochastic effects, but is generally not required.

• averageMcExcits x
Sets the average number of spawning attempts from each walker to x.

• rdmSamplingIters n
Set the maximum number of iterations used for sampling the RDMs to n. After n iterations
of sampling RDMs, the calculation will end.

• load-balance-blocks [OFF]
Distribute the determinants blockwise in a dynamic fashion to maintain equal load for all
processors. This is enabled by default and has one optional argument OFF. If given, the
load-balancing is disabled.

• energy
Additionally calculate and print the ground state energy using an exact diagonalization
technique.

• averageMcExcits n
The number of spawns to attempt per walker. Defaults to 1 and should not be changed
without good reason.

• adjust-averageMcExcits
Dynamically update the number of spawns attempted per walker. Can be used if the excitation
generator creates a lot of invalid excitations, but should be avoided else.

• scale-spawns [kscale-spawn]
Store the maximum value of Hij

pgen
for each determinant. If a bloom with more than kscale-spawn

spawns happens, then several spawning attempts with individual lower probability will happen
instead. kscale-spawn has to be smaller equal than kmaxbloom from equations 6 and 7.

• davidson-max-iters n
Set the number of iterations in Davidson’s algorithm when this is used. Such algorithm
computes a few of the smallest (or largest) eigenvalues of a large sparse real symmetric matrix.
This method is used, for instance, in the semi-stochastic implementation or when CI Davidson
is used. The default value is 50.

• davidson-target-tolerance x
Set the target convergence tolerance of the residual norm of Davidson diagonalization. The
default value is 10−7.

1.6.2.1 Population control options

• totalWalkers n
Sets the targeted number of walkers to n. This means, the shift will be varied to keep the
walker number constant once it reaches n.

• diagShift S
Set the initial value of the shift to S. A value of S < 0 is not recommended, as it will decrease
the population from the beginning.

• shiftDamp ζ
Set the damping factor used in the shift update scheme to ζ. Has to be < 1.0. Defaults to 0.1.

21

• target-shiftDamp ζ [η]
Uses the shift updating procedure presented in [14] and can be used instead of the shiftDamp
keyword. ζ is the usual shift damping factor, η is the additional second shift damping factor.
If η is not specified, it is set to ζ2/4 to achieve critical damping. Both parameters have to be
< 1.0 and η < ζ.

• stepsshift n
Sets the number of steps per update cycle of the shift to n. Defaults to 10.

• fixed-n0 n0
Instead of varying the shift to fix the total number of walkers, keep the number of walkers at
the reference fixed at n0. Automatically sets stepsSft 1 and overwrites any stepssft options
given.

• targetGrowRate grow walks
When the number of walkers in the calculation exceeds walk, the shift is iteratively adjusted
to maintain a fixed grow rate grow until reaching the requested number of total walkers.

• jump-shift [OFF]
When entering the variable shift mode, the shift will be set to the current projected energy.
This is enabled by default. There is an optional argument OFF that disables this behaviour.

• pops-jump-shift
Reset the shift when restarting a previous calculation to the current projected energy instead
of using the shift from the previous calculation.

• trunc-nopen n
Restrict the Hilbert space of the calculation to those determinants with at most n unpaired
electrons.

• avGrowthRate [OFF]
Average the change in walker number used to calculate the shift. This is enabled by default
and has one optional argument OFF, which, when given, turns the option off.

1.6.2.2 Real walker coefficient options

• allRealCoeff
Allow determinants to have non-integer population. There is a minimal population below
which the population of a determinant will be rounded stochastically. This defaults to 1.

• realSpawnCutoff (x | OFF | ON)
Continuous real spawning will be performed, unless the spawn has weight less than x. In this
case, the weight of the spawning will be stochastically rounded up to x or down to zero, such
that the average weight of the spawning does not change. This is a method of removing very
low weighted spawnings from the spawned list, which require extra memory, processing and
communication. This keyword is on by default with a value of x = 0.95. It can be explicitly
turned off via OFF, explicitly turned on via ON (using the default value then), or it can read a
user-supplied value for x.

• realCoeffbyExcitLevel n
Allow all determinants up to an excitation level of n to have non-integer population.

• setOccupiedThresh x
Set the value for the minimum walker weight in the main walker list. If, after all annihilation
has been performed, any determinants have a total weight of less than x, then the weight will
be stochastically rounded up to x or down to zero such that the average weight is unchanged.
Defaults to 1, which should only be changed with good reason.

• energy-scaled-walkers [mode α β]
Scales the occupied threshold with the energy of a determinant. Has three optional arguments
and requires allRealCoeff. The argument mode can be one of EXPONENTIAL, POWER,

22

EXP-BOUND or NEGATIVE and defaults to POWER. Both α and β default to 1 and
realspawncutoff β is implied.

1.6.2.3 Time-step options

• tau-values
This keyword is mandatory. It is followed by “start”, “min”, or “max” and their respective
sub-keywords. It is necessary to define the source of the starting value of ∆τ , this means that
start is required.

– start
This defines the source of the initial ∆τ .

Has to be followed by one of the following sub-keywords:

∗ user-defined ∆τ
Has to be followed by a real number that is the initial ∆τ .

∗ from-popsfile
Use the value from a popsfile. Requires readpops.

∗ tau-factor
Use tau-factor times the connections from the reference determinant as starting
guess.

∗ refdet-connections
Use information about the connections from the reference determinant as starting
guess.

∗ deterministic
Use the deterministic time-step:

τ = 1
Emax − E0

(5)

where Emax − E0 is approximated by the spread of diagonal elements of Ĥ.

∗ not-needed
Say explicitly that ∆τ is not needed. This is only relevant for fully deterministic
calculations, e.g. Lanczos CI.

– [min τmin]
Optional keyword. It defines a minimum for the initial value of ∆τ and following
∆τ -searches.

– [max τmax]
Optional keyword. It defines a maximum for the initial value of ∆τ and following
∆τ -searches.

– [readpops-but-tau-not-from-popsfile]
Optional keyword. If readpops is switched on, but ∆τ should not be read from a popsfile
then it is necessary to explicitly state that it is indeed wanted.

• tau-search
The ∆τ -search is off by default, but can be switched on with two different algorithms. It can
also be switched off again when certain stop conditions are reached, since it is an unnecessary
expensive operation when ∆τ has reached a stable value. Has the following sub-keywords:

– [algorithm]
Optional keyword. This defines the algorithm of the ∆τ -search.

Has to be followed by one of the following sub-keywords:

23

∗ conventional
Adjusts ∆τ such that:

∆τ = kmaxbloom ·min
i,j

(
pgen(i, j)
Hij

)
. (6)

The prefactor kmaxbloom is changed via MaxWalkerBloom.

∗ histogramming [(1− c) nbins b]
Update the time-step based on histogramming of the ratio Hij

pgen(i|j) .

∆τ = kmaxbloom ·
(
argmint

∣∣∣c− ∫ t

0
p(x) dx

∣∣∣)−1

. (7)

Where p is the probability distribution of Hij

pgen(i|j) which is obtained numerically
by binning. The three arguments 1− c, nbins and b are optional. 0 < c < 1 is the
fraction of the histogram used for determining the new timestep, nbins the number
of bins in the histogram and b is the maximum value of Hij

pgen(i|j) to be stored.
For spin-adapted GUGA calculations this option is highly recommended! Otherwise
the time-step can become quite small in these simulations. Note that for c = 1 the
conventional and histogramming time-search are equivalent. The prefactor kmaxbloom
is changed via MaxWalkerBloom.

– [stop-condition]
Optional keyword. Defines a stop-condition for the ∆τ -search. The default is var-shift,
i.e. the search ends, when variable shift mode is reached.

Has to be followed by one of the following sub-keywords:

∗ off
No stop-condition, i.e. run ∆τ -search until the calculation ends.

∗ no-change i
The ∆τ -search is switched off, if there was no change of ∆τ in the last i iterations.

∗ max-iter i
The ∆τ -search is switched off after the i-th iteration.

∗ max-eq-iter i
The ∆τ -search is switched off after the i-th iteration counting from variable shift
mode.

∗ n-opts i
The ∆τ -search is switched off after the i-th optimization of ∆τ .

∗ var-shift
The ∆τ -search is switched off if variable shift is reached.

– [off]
Switch the tau-search explicitly off. (Equivalent to not having the tau-search keyword at
all.) Note that this keyword is incompatible with other options (e.g. maxWalkerBloom).

– [scale-tau-to-death]
Optional keyword. Off by default. If the ∆τ -search is off, still scale ∆τ such that the
death probability is smaller than 1.0.

– maxWalkerBloom kmaxbloom
The time step is scaled such that at most kmaxbloom walkers are spawned in a single
attempt, with the scaling being guessed from previous spawning attempts. Changes the
prefactor in equations 6 and 7.

24

• truncate-spawns [n UNOCC]
Truncate spawns which are larger than a threshold value n. Both arguments are optional,
n defaults to 3. If UNOCC is given the truncation is restricted to spawns onto unoccupied.
Useful in combination with hist-tau-search.

1.6.2.3.1 Example inputs for ∆τ The following input start with ∆τ = 0.002 I·~
Eh

and keeps
its value between 0.001 I·~

Eh
and 0.003 I·~

Eh
. The conventional ∆τ -search that is stopped if there was

no change of ∆τ for 1000 iterations.
tau - values \

start user - defined 0.002 \
min 0.001 \
max 0.003

tau - search \
algorithm conventional \
stop - condition no - change 1000

The following input start with ∆τ from a popsfile. The histogramming ∆τ -search is performed
with c = 0.9999, nbins = 1000, b = 2000 and is stopped after 10000 iterations.

tau - values \
start from - popsfile

tau - search \
algorithm histogramming 1e -4 1000 2000 \
stop - condition max -iter 10000

1.6.2.4 Wave function initialization options

• walkContGrow
When reading in a wave function from a file, do not set the shift or enter variable shift mode.

• defineDet det
Sets the reference determinant of the calculation to det. If no other initialisation is specified,
this will also be the initial wave function. The format can either be a comma-separated list of
spin orbitals, a range of spin orbitals (like 12-24) or a combination of both.
For spin-adapted calculations using the GUGA keyword defining a starting reference CSF
manually is highly encouraged, as the automatic way often fails. It works in similar ways
as for SDs, however odd numbered singly occupied orbitals indicate a positive spin coupled
orbital in GUGA CSFs and even numbered singly occupied orbitals negatively spin coupled.
So one needs to be careful to not define a unphysical CSF with an negative intermediate total
spin Si < 0. E.g. a CSF like:
definedet 1 2 4 5
would cause the calculation to crash, as the first singly occupied orbital (4) would cause the
total spin to be negative Si < 0. When defining the starting CSF one also needs to ensure
that the defined CSFs satisfies the total number of electrons and total S defined in the System
block of the input with the keywords nel and guga. As an example a triplet (guga 2) CSF with
4 electrons (nel 4) would be
definedet 1 2 3 5
with the first spatial orbital doubly occupied and 2 open-shell orbitals (positively spin coupled,
hence odd numbers).

• readPops
Read in the wave function from a file and use the read-in wave function for initialisation. In
addition to the wave function, also the time-step and the shift are read in from the file. This
starts the calculation in variable shift mode, maintaining a constant walker number, unless
walkContGrow is given.

• readpops-changeref
Allow the reference determinant to be updated after reading in a wave function.

25

• startSinglePart [n]
Initialise the wave function with n walkers on the reference only unless specified differently.
The argument n is optional and defaults to 1.

• proje-changeRef [frac min]
Allow the reference to change if a determinant obtains frac times the population of the
current reference and the latter has a population of at least min. Both arguments are optional
and default to 1.2 and 50, respectively. This is enabled by default.

• no-changeref
Never change the reference.

1.6.2.5 Initiator options

• truncInitiator
Use the initiator method [5].

• addToInitiator x
Sets the initiator threshold to x, so any determinant with more than x walkers will be an
initiator.

• senior-initiators [age]
Makes any determinant that has a half-time of at least age iterations an initiator. age is
optional and defaults to 1.

• superInitiators [n]
Create a list of n superinitiators, from which all connected determinants are set to be initiators.
The superinitiators are chosen according to population. n is optional and defaults to 1.

• coherent-superInitiators [mode]
Apply a restriction on the sign-coherence between a determinant and any connected superini-
tiator to determine whether it becomes an initiator due to connection. The optional argument
mode can be chosen from STRICT, WEAK, XI, AV and OFF. The default is WEAK and is
enabled by default if the superInitiators keyword is given.

• dynamic-superInitiators n
Updates the list of superinitiators every n steps. This is enabled by default with n = 100
if the superInitiators keyword is given. A value of 0 indicates no update. This implies the
dynamic-core n option (with the same n) unless specified otherwise.

• allow-signed-spawns mode
Never abort spawns with a given sign, regardless of initiators. mode can be either POS or
NEG, indicating the sign to keep.

• initiator-space
Define all determinants within a given initiator space as initiators. The space is specified
through one of the following keywords

– doubles-initiator
Use the reference determinant and all single and double excitations from it to form the
initiator space.

– cas-initiator cas1 cas2
Use a CAS space to form the initiator space. The parameter cas1 specifies the number
of electrons in the cas space and cas2 specifies the number of virtual spin orbitals (the
cas2 highest energy orbitals will be virtuals).

– ras-initiator ras1 ras2 ras3 ras4 ras5
Use a RAS space to form the initiator space. Suppoose the list of spatial orbitals are
split into three sets, RAS1, RAS2 and RAS 3, ordered by their energy. ras1, ras2 and
ras3 then specify the number of spatial orbitals in RAS1, RAS2 and RAS3. ras4 specifies
the minimum number of electrons in RAS1 orbitals. ras5 specifies the maximum number

26

of electrons in RAS3 orbitals. These together define the RAS space used to form the
initiator space.

– optimised-initiator
Use the iterative approach of Petruzielo et al. (see PRL, 109, 230201). One also needs
to use either optimised-initiator-cutoff-amp or optimised-initiator-cutoff-num with this
option.

– optimised-initiator-cutoff-amp x1, x2, x3. . .
Perform the optimised initiator option, and in iteration i, choose which determinants
to keep by choosing all determinants with an amplitude greater than xi in the ground
state of the space (see PRL 109, 230201). The number of iterations is determined by the
number of parameters provided.

– optimised-initiator-cutoff-num n1, n2, n3. . .
Perform the optimised initiator option, and in iteration i, choose which determinants
to keep by choosing the ni most significant determinants in the ground state of the
space (see PRL 109, 230201). The number of iterations is determined by the number of
parameters provided.

– fci-initiator
Use all determinants to form the initiator space. A fully deterministic projection is
therefore performed with this option.

– pops-initiator n
When starting from a POPSFILE, this option will use the n most populated determinants
from the popsfile to form the initiator space.

– read-initiator
Use the determinants in the INITIATORSPACE file to form the initiator space. A INI-
TIATORSPACE file can be created by using the write-initiator option in the LOGGING
block.

1.6.2.6 Adaptive shift options

• auto-adaptive-shift [t α c]
Scale the shift per determinant based on the acceptance rate on a determinant. Has three
optional arguments. The first is the threshold value t which is the minimal number of spawning
attempts from a determinant over the full calculation required before the shift is scaled, with
a default of 10. The second is the scaling exponent α with a default of 1 and the last is the
minimal scaling factor, which uses 1

HF conn. as default.

• linear-adaptive-shift [σ f1 f2]
Scale the shift per determinant linearly with the population of a determinant. All arguments
are optional and define the function used for scaling. σ gives the minimal walker number
required to have a shift and defaults to 1, f1 the shift fraction to be applied at σ with a
default of 0 and f2 is the shift fraction to be applied at the initiator threshold, defaults to 1.
Every initiator is applied the full shift.

• core-adaptive-shift
By default, determinants in the corespace are always applied the full shift. Using this option
also scales the shift in the corespace.

• aas-matele2
Uses the matrix elements for determining the scaling factor in the auto-adaptive-shift. The
recommended option to scale the shift.

1.6.2.7 Multi-replica options

27

• multiple-initial-refs
Define a reference determinant for each replica. The following n lines give the reference
determinants as comma-separated lists of orbitals, where n is the number of replicas.

• orthogonalise-replicas
Orthogonalise the replicas after each iteration using Gram Schmidt orthogonalisation. This
will converge each replica to another state in a set of orthogonal eigenstates. Can be used for
excited state search.

• orthogonalise-replicas-symmetric
Use the symmetric Löwdin orthonaliser instead of Gram Schmidt for orthogonalising the
replicas.

• replica-single-det-start
Starts each replica from a different excited determinant.

1.6.2.8 Semi-stochastic options

• semi-stochastic
Turn on the semi-stochastic adaptation.

• pops-core n
This option will use the n most populated determinants to form the core space. This keyword
cannot be used with pops-core-proportion. Note that core-space configurations behave like
initiators and are treated as such by default. See also the core-inits keyword.

• pops-core-proportion f
This option will use a fraction f of most populated initiator determinants to form the core
space. For example, about 50% of most populated initiator determinants are chosen if f = 0.5.
This keyword cannot be used with pops-core and requires semi-stochastic.

• doubles-core
Use the reference determinant and all single and double excitations from it to form the core
space.

• cas-core cas1 cas2
Use a CAS space to form the core space. The parameter cas1 specifies the number of electrons
in the cas space and cas2 specifies the number of virtual spin orbitals (the cas2 highest energy
orbitals will be virtuals).

• ras-core ras1 ras2 ras3 ras4 ras5
Use a RAS space to form the core space. Suppoose the list of spatial orbitals are split into
three sets, RAS1, RAS2 and RAS 3, ordered by their energy. ras1, ras2 and ras3 then specify
the number of spatial orbitals in RAS1, RAS2 and RAS3. ras4 specifies the minimum number
of electrons in RAS1 orbitals. ras5 specifies the maximum number of electrons in RAS3
orbitals. These together define the RAS space used to form the core space.

• optimised-core
Use the iterative approach of Petruzielo et al. (see PRL, 109, 230201). One also needs to use
either optimised-core-cutoff-amp or optimised-core-cutoff-num with this option.

• optimised-core-cutoff-amp x1, x2, x3. . .
Perform the optimised core option, and in iteration i, choose which determinants to keep by
choosing all determinants with an amplitude greater than xi in the ground state of the space
(see PRL 109, 230201). The number of iterations is determined by the number of parameters
provided.

• optimised-core-cutoff-num n1, n2, n3. . .
Perform the optimised core option, and in iteration i, choose which determinants to keep by
choosing the ni most significant determinants in the ground state of the space (see PRL 109,
230201). The number of iterations is determined by the number of parameters provided.

28

• fci-core
Use all determinants to form the core space. A fully deterministic projection is therefore
performed with this option. This option requires information about spin(-projection) and
spatial symmetry, so the keywords sym, and spin-restrict for a diagonalization in a Slater
Determinant basis or guga for a diagonalization in a Gelfand-Tsetlin basis are required.

• read-core
Use the determinants in the CORESPACE file to form the core space. A CORESPACE file
can be created by using the write-core option in the LOGGING block.

• dynamic-core n
Update the core space every n iterations, where n is optional and defaults to 400. This is
enabled by default if the superinitiators option is given.

• core-inits [{OFF, ON}]
Declare all determinants in the core-space as initiators, independent from their population.
Since core-space determinants behave like initiators regardless of their population this option
is enabled by default. There is an optional keyword which is either ON, or OFF. If the
optional keyword is ommitted it defaults to ON.

1.6.2.9 Trial wave function options

• trial-wavefunction [n]
Use a trial wave function to obtain an estimate for the energy, as described in 1.4. The
argument n is optional, when given, the trial wave function will be initialised n iterations
after the variable shift mode started, else, at the start of the calculation. The trial wave
function is defined through one of the following keywords

– pops-trial n
When starting from a POPSFILE, this option will use the n most populated determinants
from the popsfile to form the trial space.

– doubles-trial
Use the reference determinant and all single and double excitations from it to form the
trial space.

– cas-trial cas1 cas2
Use a CAS space to form the trial space. The parameter cas1 specifies the number of
electrons in the cas space and cas2 specifies the number of virtual spin orbitals (the cas2
highest energy orbitals will be virtuals).

– ras-trial ras1 ras2 ras3 ras4 ras5
Use a RAS space to form the trial space. Suppoose the list of spatial orbitals are split
into three sets, RAS1, RAS2 and RAS 3, ordered by their energy. ras1, ras2 and ras3
then specify the number of spatial orbitals in RAS1, RAS2 and RAS3. ras4 specifies the
minimum number of electrons in RAS1 orbitals. ras5 specifies the maximum number of
electrons in RAS3 orbitals. These together define the RAS space used to form the trial
space.

– optimised-trial
Use the iterative approach of Petruzielo et al. (see PRL, 109, 230201). One also needs
to use either optimised-trial-cutoff-amp or optimised-trial-cutoff-num with this option.

– optimised-trial-cutoff-amp x1, x2, x3. . .
Perform the optimised trial option, and in iteration i, choose which determinants to keep
by choosing all determinants with an amplitude greater than xi in the ground state of
the space (see PRL 109, 230201). The number of iterations is determined by the number
of parameters provided.

– optimised-trial-cutoff-num n1, n2, n3. . .
Perform the optimised trial option, and in iteration i, choose which determinants to keep

29

by choosing the ni most significant determinants in the ground state of the space (see
PRL 109, 230201). The number of iterations is determined by the number of parameters
provided.

– fci-trial
Use all determinants to form the trial space. A fully deterministic projection is therefore
performed with this option.

1.6.2.10 Memory options

• memoryFacPart x
Sets the factor between the allocated space for the wave function and the required memory
for the specified number of walkers to x. Defaults to 10.

• memoryFacSpawn x
Sets the factor between the allocated space for new spawns and the estimate of required
memory for the spawns of the specified number of walkers on a single processor to x. The
memory required for spawns increases, the more processors are used, so when running with
few walkers on relatively many processors, a large factor might be needed. Defaults to 3.

• prone-determinants
Instead of terminating when running out of memory, randomly delete determinants with low
population and few spawns.

• store-dets
Employ extra memory to store additional information on the determinants that had to be
computed on the fly else. Trades in memory for faster iterations.

1.6.2.11 Reduced density matrix (RDM) options

• rdmSamplingIters n
Set the number of iterations for sampling the RDMs to n. After n iterations of sampling, the
calculation ends.

• inits-rdm
Only take into account initiators when calculating RDMs. By default, only restricts to
initiators for the right vector used in RDM calculation. This makes the RDMs non-variational,
and the resulting energy is the projected energy on the initiator space.

• strict-inits-rdm
Require both sides of the inits-rdm to be initiators.

• no-lagrangian-rdms
This option disables the correction used for RDM calculation for the adaptive shift. Use this
only for debugging purposes, as the resulting RDMs are flawed.

1.6.2.12 METHODS Block The METHODS block is a subblock of CALC, i.e. it is specified
inside the CALC block. It sets the main algorithm to be used in the calculation. The subblock is
started with the methods keyword and terminated with the endmethods keyword.

• methods
Starts the METHODS block

• endmethods
Terminates the METHODS block.

• method mode
Sets the algorithm to be executed. The relevant choice for mode is VERTEX FCIMC to run
an FCIQMC calculation. Alternative choices are DETERM-PROJ to run a deterministic
calculation and SPECTRAL-LANCZOS to calculate a spectrum using the lanczos algorithm.

30

1.6.3 INTEGRAL Block

The INTEGRAL block can be used to freeze orbitals and set properties of the integrals. The block
is started with the integral keyword and terminated with the endint keyword.

• integral
Starts the INTEGRAL block.

• endint
Terminates the INTEGRAL block.

• freeze n m
Freeze n core and m virtual orbitals which are not to be considered active in this calculation.
The orbitals are selected according to orbital energy, the n lowest and m highest orbitals in
energy are frozen.

• freezeInner n m
Freeze n core and m virtual orbitals which are not to be considered active in this calculation.
The orbitals are selected according to orbital energy, the n highest and m lowest orbitals in
energy are frozen.

• partiallyFreeze norb nholes
Freeze norb core orbitals partially. This means at most nholes holes are now allowed in these
orbitals.

• partiallyFreezeVirt norb nels
Freeze norb virtual orbitals partially. This means at most nels electrons are now allowed in
these orbitals.

• hdf5-integrals
Read the 3-body integrals for a transcorrelated ab-initio Hamiltonian from an HDF5 file.
Ignored when the molecular-transcorrelated keyword is not given. Requires compiling with
HDF5.

• sparse-lmat
Store the 3-body integrals in a sparse format to save memory. Initialisation and iterations
might be slower. Requires hdf5-integrals.

1.6.4 Development keywords

• UNIT-TEST-PGEN
Test the pgens for the n(most populated) configurations of an existing pops-file. Per-
form the tests n(iterations) times for each configuration. The order of arguments is
n(most populated), n(iterations).

1.6.5 KP-FCIQMC Block

This block enables the Krylov-projected FCIQMC (KPFCIQMC) method [1] which is fully imple-
mented in NECI. It requires dneci or mneci to be run. When specifying the KP-FCIQMC block,
the METHODS block should be omitted. This block is started with the kp-fciqmc keyword and
terminated with the end-kp-fciqmc keyword.

• kp-fciqmc
Starts the KP-FCIQMC block

• end-kp-fciqmc
Terminates the KP-FCIQMC block.

• num-krylov-vecs N
N specifies the total number of Krylov vectors to sample.

31

• num-iters-between-vecs N
N specifies the (constant) number of iterations between each Krylov vector sampled. The
first Krylov vector is always the starting wave function.

• num-iters-between-vecs-vary i12, i23, i34. . .
in,n+1 specifies the number of iterations between the nth and (n+1)th Krylov vectors. The
number of parameters input should be the number of Krylov vectors asked for minus one.
The first Krylov vector is always the starting wave function.

• num-repeats-per-init-config N
N specifies the number repeats to perform for each initial configuration, i.e. the number of
repeats of the whole evolution, from the first sampled Krylov vector to the last. The projected
Hamiltonian and overlap matrix estimates will be output for each repeat, and the averaged
values of these matrices used to compute the final results.

• averagemcexcits-hamil N
When calculating the projected Hamiltonian estimate, an FCIQMC-like spawning is used,
rather than calculating the elements exactly, which would be too computationally expensive.
Here, N specifies the number of spawnings to perform from each walker from each Krylov
vector when calculating this estimate. Thus, increasing N should improve the quality of the
Hamiltonian estimate.

• finite-temperature
If this option is included then a finite-temperature calculation is performed. This involves
starting from several different random configurations, whereby walkers are distributed on
random determinants. The number of initial configurations should be specified with the
num-init-configs option.

• num-init-configs N
N specifies the number of initial configurations to perform the sampling over. An entire
FCIQMC calculation will be performed, and an entire subspace generated, for each of these
configurations. This option should be used with the finite-temperature option, but is not
necessary for spectral calculations where one always starts from the same initial vector.

• memory-factor x
This option is used to specify the size of the array allocated for storing the Krylov vectors.
The number of slots allocated to store unique determinants in the array holding all Krylov
vectors will be equal to ABx, where here A is the length of the main walker list, B is the
number of Krylov vectors, and x is the value input with this option.

• num-walkers-per-site-init x
For finite-temperature jobs, x specifies the number of walkers to place on a determinant when
it is chosen to be occupied.

• exact-hamil
If this option is specified then the projected Hamiltonian will be calculated exactly for each set
of Krylov vectors sampled, rather than randomly sampling the elements via an FCIQMC-like
spawning dynamic.

• fully-stochastic-hamil
If this option is specified then the projected Hamiltonian will be estimated without using the
semi-stochastic adaptation. This will decrease the quality of the estimate, but may be useful
for debugging or analysis of the method.

• init-correct-walker-pop
For finite-temperature calculations on multiple cores, the initial population may not be
quite as requested. This is because the quickest (and default) method involves generating
determinants randomly and sending them to the correct processor at the end. It is possible
in this process that walkers will die in annihilation. However, if this option is specified then
each processor will throw away spawns to other processors, thus allowing the correct total
number of walkers to be spawned.

32

• init-config-seeds seed1, seed2. . .
If this option is used then, for finite-temperature calculations, at the start of each calculation
over an initial configuration, the random number generator will be re-initialised with the
corresponding input seed. The number of seeds provided should be equal to the number of
initial configurations.

• all-sym-sectors
If this option is specified then the FCIQMC calculation will be run in all symmetry sectors
simultaneously. This is an option relevant for finite-temperature calculations.

• scale-population
If this option is specified then the initial population will be scaled to the populaton specified
with the ‘totalwalkers’ option in the Calc block. This is relevant for spectral calculations
when starting from a perturbed POPSFILE wave function, where the initial population is not
easily controlled.

In spectral calculations, one also typically wants to consider a particular perturbation operator acting
on the ground state wave functions. Therefore, you must first perform an FCIQMC calculation
to evolve to the ground state and output a POPSFILE. You should then start the KP-FCIQMC
calculation from that POPSFILE. To apply a perturbation operator to the POPSFILE wave function as it
is read in, use the pops-creation and pops-annihilate options. These allow operators such as

V̂ = ĉiĉj + ĉk ĉlĉm

to be applied to the POPSFILE wave function. The general form is pops-annihilate n_sum orb1 orb2...
... where nsum is the number of terms in the sum for V̂ (2 in the above example), and orbi specify
the spin orbital labels to apply. The number of lines of such orbitals provided should be equal to
nsum. The first line provides the orbital labels for the first term in the sum, the second line for the
second term, etc. . .

1.6.6 REALTIME Block

The REALTIME block enables the calculation of the real-time evolution of a given state and is only
required for real-time calculations. Real-time evolution strictly requires kneci or kmneci and using
kmneci is strongly recommended. This block is started with the realtime keyword and terminatd
with the endrealtime keyword.

• realtime
Starts the realtime block. This automatically enables readpops, and reads from a file named
<popsfilename>.0.

• endrealtime
Terminates the REALTIME block.

• single i a
Applies a single excitation operator exciting from orbital i to orbital a to the initial state
before starting the calculation.

• lesser i j
Calculates the one-particle Green’s function < c†i (t)cj >. Requires using one electron less
than in the popsfile.

• greater i j
Calculates the one-particle Green’s function < ci(t)c†j >. Requires using one electron more
than in the popsfile.

• start-hf
Do not read in a popsfile but start from a single determinant.

• rotate-time α
Calculates the evolution along a trajectory eiαt instead of pure real-time trajectory.

33

• dynamic-rotation [η]
Determine a time-dependent α on the fly for rotate-time. η is optional and a damping
parameter, defaults to 0.05. α is then chosen such that the walker number remains constant.

• rotation-threshold N
Grow the population to N walkers before starting to adjust α.

• stepsalpha n
The number of timesteps between two updates of the α parameter when using dynamic-rotation.

• log-trajectory
Output the time trajectory to a separate file. This is useful if the same calculation shall be
reproduced.

• read-trajectory
Read the time trajectory from disk, using a file created by NECI with the log-trajectory
keyword.

• live-trajectory
Read the time trajectory from disk, using a file which is currently being created by NECI with
the log-trajectory keyword. Can be used to create additional data for the same trajectory
while the original calculation is still running.

• noshift
Do not apply a shift during the real-time evolution. Strongly recommended.

• stabilize-walkers [S]
Use the shift to stabilize the walker number if it drops below 80% of the peak value. S Is
optional and is an asymptotic value used to fix the shift.

• energy-benchmark E
Set the energy origin to E by applying a global, constant shift to the Hamiltonian. Can be
chosen arbitrarily, but a reasonable selection can greatly help efficiency.

• rt-pops
A second popsfile is supplied containing a time evolved state created with the realtime keyword
whose time evolution is to be continued. In this case, the original popsfile is still required for
calculating properties, so two popsfiles will be read in.

1.6.7 LOGGING Block

The LOGGING block specifies the output of the calculation and which status information of the
calculation shall be collected. This block is started with the logging keyword and terminated with
the endlog keyword.

• logging
Starts the LOGGING block.

• endlog
Terminates the LOGGING block.

• hdf5-pops
Sets the format to read and write the wave function to HDF5. Requires building with the
ENABLE-HDF5 cmake option.

• popsfile n
Save the current wave function on disk at the end of the calculation. Can be used to initialize
subsequent calculations and continue the run. This is enabled by default. n is optional and,
when given, specifies that every n iteration, the wave function shall be saved. Setting n = −1
disables this option.

34

• popsFileTimer n
Write out a the wave function to disk every n hours, each time renaming the last <popsfile>
to <popsfile>.bk.

• hdf5-pops-write
Sets the format to write the wave function to HDF5. Requires building with the ENABLE-HDF5
cmake option.

• hdf5-pops-read
Sets the format to read the wave function to HDF5. Requires building with the ENABLE-HDF5
cmake option.

• highlyPopWrite n
Print out the n most populated determinants at the end of the calculation. Is enabled by
default with n = 15.

• replicas-popwrite [n]
Have each replica print out its own highly populated determinants in a separate block instead
of one collective output of the on average most important determinants. Optionally, n is the
numbers of determinants to print, this is the same n as in highlypopwrite.

• inits-exlvl-write n
Sets the excitation level up to which the number of initiators is logged to n. Defaults to
n = 8.

• binarypops
Sets the format to write the wave function to binary.

• nomcoutput
Suppress the printing of iteration information to stdout. This data is still written to disk.

• stepsOutput n
Write the iteration data to stdout/disk every n iterations. Defaults to the number of iterations
per shift cycle. Setting n = 0 disables iteration data output to stdout and uses the shift cycle
for disk output.

• fval-energy-hist
Create a histogram of the scaling factor used for the auto-adaptive shift over the energy of a
determinant. Only has an effect if auto-adaptive-shift is used.

• fval-pop-hist
Create a histogram of the scaling factor used for the auto-adaptive shift over the population
of a determinant. Only has an effect if auto-adaptive-shift is used.

• local-spin
Activates the cumulative local spin, Ŝ2

i , measurement for spin-adapted GUGA calculations.
Needs two replicas for an unbiased measurement. Since this is a diagonal property for the
GUGA, there is no additional cost.

• biased-RDMs
Only relevant for (k)-neci runs. By default the calculation stops with an error if RDMs are
sampled with (k)-neci to prevent user error. With this keyword the user can explicitly say
that they want to sample RDMs without replica.

• ci-coefficients [n excitation]
Enables the collection of CI coefficients and their average over a number of iterations. The
outputs are printed in separate ASCII files named ci_coeff_*_av. Additional files named
ci_coeff_* are printed in a sorted manner that can directly be fed into Molpro [12] for tailored
Coupled/Distinguishable Cluster calculations [10]-[11]. The optional argument n is the number
of iterations for averaging the CI coefficients and defaults to 1000. This is done in the last
iterations of the FCIQMC run (i.e. if NMCYC = 10000 and n = 1000, the CI coefficients
collection will start at iteration 9001). However, the collection can begin after the NECI

35

run reaches the preset number of walkers, but it should only take place when the projected
correlation energy is already converged. The second optional argument is the excitation
level of the CI coefficients to be collected and defaults to 2 (i.e., only singles and doubles).
CI coefficients up to triples (i.e. setting excitation = 3) are available. The semi-stochastic
approach is recommended, in order to reach a lower stochastic error for equal time averaging
of the CI coefficients.

1.6.7.1 Semi-stochastic output options

• write-core
When performing a semi-stochastic calculation, adding this option to the Logging block will
cause the core space determinants to be written to a file called CORESPACE. These can then
be further read in and used in subsequent semi-stochastic options using the read-core option
in the CALC block.

• write-most-pop-core-end n
At the end of a calculation, output the n most populated determinants to a file called
CORESPACE. This can further be read in and used as the core space in subsequent calculations
using the read-core option.

• print-core-hamil
Prints the semi-stochastic Hamiltonian and the semistochastic basis states to the output file
semistoch-hamil and semistoch-basis. Caution with the size of the semistochastic space!

• print-core-vec
Prints the semi-stochastic “eigenvector” to the output files determ_vecs and determ_vecs_av.
Caution with the size of the semistochastic space!

1.6.7.2 RDM output options These options control how the RDMs are printed. For a
description of how the RDMs are calculated and the content of the files, please see section 1.7.

• calcRdmOnfly i step start
Calculate RDMs stochastically over the course of the calculation. Starts sampling RDMs
after start iterations, and outputs an average every step iterations. i indicates whether only
1-RDMs (1), only 2-RDMs (2) or both are produced.

• rdmLinSpace start n step
A more user friendly version of calcrdmonfly and rdmsamplingiters, this samples both 1- and
2-RDMs starting at iteration start, outputting an average every step iterations n times, then
ending the calculation.

• diagFlyOneRdm
Diagonalise the 1-RDMs, yielding the occupation numbers of the natural orbitals.

• printOneRdm
Always output the 1-RDMs to a file, regardless of which RDMs are calculated. May compute
the 1-RDMs from the 2-RDMs.

• writeRdmsToRead off
The presence of this keyword overrides the default. If the OFF word is present, the unnor-
malised TwoRDM_POPS_a*** files will definitely not be printed, otherwise they definitely will be,
regardless of the state of the popsfile/binarypops keywords.

• readRdms
This keyword tells the calculation to read in the TwoRDM_POPS_a*** files from a previous cal-
culation. The restarted calc then continues to fill these RDMs from the very first iteration
regardless of the value put with the calcRdmOnFly keyword. The calculation will crash if one of
the TwoRDM_POPS_a*** files are missing. If the readRdms keyword is present, but the calc is doing
a StartSinglePart run, the TwoRDM_POPS_a*** files will be ignored.

36

• noNormRdms
This will prevent the final, normalised TwoRDM_a*** matrices from being printed. These files
can be quite large, so if the calculation is definitely not going to be converged, this keyword
may be useful.

• writeRdmsEvery iter
This will write the normalised TwoRDM_a*** matrices every iter iterations while the RDMs are
being filled. At the moment, this must be a multiple of the frequency with which the energy
is calculated. The files will be labelled with incrementing values - TwoRDM_a***.1 is the first,
and then next TwoRDM_a***.2 etc.

• write-spin-free-rdm
Output the spin-free 2-RDMs to disk at the end of the calculation.

• printRoDump
Output the integrals of the natural orbitals to a file.

• print-molcas-rdms
It is now possible to calculate stochastic spin-free RDMs with the GUGA implementation.
This keyword is necessary if one intends to use this feature in conjunction with Molcas to
perform a spin-free Stochastic-CASSCF. It produces the three files DMAT, PAMAT and PSMAT,
which are read-in by Molcas.

• full-core-rdms
In the “normal” RDM only entries, e.g. for the 1-RDM, ρij , which are actually connected by
some Hamiltonian matrix element are sampled. This has no negative effect on the energy
calculation, but for properties, e.g. spin-spin correlation functions. This option activates a
full sampling of RDMs, at least in the semi-stochastic space. This option does increase the
cost though.

• print-hdf5-rdms
Output the density matrices in HDF5 format to a file called fciqmc.rdms.<statenumber>.h5.
Currently only pure state RDMs are supported. This keyword needs to be used in conjunction
with write-spin-free-rdm for the 2RDM and printonerdm for the 1RDM respectively.

1.6.8 FCIMCStats output functions

• instant-s2-full [x]
Calculate an instantaneous value for Ŝ2, and output it to the relevant column (28) in the
FCIMCStats file.

The second optional parameter is a multiplier such that we only calculate Ŝ2 once for every n
update cycles (it must be on an update cycle such that |Ψ|2 is correct)

• instant-s2-init [x]
Calculate an instantaneous value for Ŝ2, considering only the initiators, and output it to the
relevant column (29) in the FCIMCStats file.

The second optional parameter is a multiplier such that we only calculate Ŝ2 once for every n
update cycles (it must be on an update cycle such that |Ψ|2 is correct)

1.7 Output files

Apart from the output that is printed to standard out there are some other useful files created by
NECI. Some of them are only created, when certain keywords are given.

37

1.7.1 FCIMCStats

This file contains whitespace delimited data that is written every 10nth iteration. Currently
(2021-06-08) there are 35 columns. The information in this file is useful in virtually every way of
using NECI.

The columns are listed in the following. Important and often used columns are highlighted red,
rarely used columns are greyed out.

1 Steps (Step)
The number of iterations.

2 Shift (Shift)
The shift S for population control. Equals the correlation energy in the equilibrium. Shift +
Reference energy should equal the projected energy in equilibrium.

3 Walker Change (WalkerCng)
Absolute change of the walker number. (Since there are fractional walkers, this can be non-integer.)

4 Growth Rate (GrowRate)
Relative change of walker number.

5 Total Walkers (TotWalkers)
The number of total walkers.

6 Annihilation (Annihil)
The number of annihilated walkers.

7 Number of died walkers (NoDied)
The number of died walkers (from annihilation or diagonal death step).

8 Number of born walkers (NoBorn)
The number of born walkers.

9 Projected averaged correlation energy (Proj.E)
Averaged correlation energy as calculated from the projected energy expression. The unaveraged
values are given in column 11.

10 Average Shift (Av.Shift)
Averaged shift. Note that it should not be used, when the average was taken over a period that not
in stationary conditions.

11 Projected instantaneous correlation energy (Proj.E.ThisCyc)
Instantaneous (not averaged) correlation energy as calculated from the projected energy expression.

Eproj −H00 = 〈D0|H|Ψ〉
〈D0Ψ〉 −H00 =

∑
j 6=0

H0j
Cj
C0

. (8)

The averaged values are given in column 9. The total energy (correlation + reference energy) is
given in column 23)

12 Number of walkers at reference determinant D0 (NoatHF)
The number of walkers at the reference determinant. (Since there are fractional walkers, this can
be non-integer.)

13 Number of walkers at doubles (NoatDoubs)
Number of walkers that are a double excitation away from the reference.

14 Acceptance rate (AccRat)
Probability that a spawn gets accepted. This is not the condition probability, but the absolute one.

15 Uniqe determinants (UniqueDets)
Number of unique configurations (determinants/CSFs).

38

16 Iteration time (IterTime)
This is the time averaged over the last 10 iterations.

17 (FracSpawnFromSing)
TODO

18 (WalkersDiffProc)
TODO

19 Total imaginary time τ (TotImagTime)
The elapsed imaginary time since start of the dynamics.

20 (ProjE.ThisIter)
TODO

21 (HFInstShift)
TODO

22 (TotInstShift)
TODO

23 Projected instantaneous total energy (Tot-Proj.E.ThisCyc)
Instantaneous (not averaged) total energy as calculated from the projected energy expression

Eproj = 〈D0|H|Ψ〉
〈D0Ψ〉 = H00 +

∑
j 6=0

H0j
Cj
C0

. (9)

The instantaneous correlation energy is given in column 11. The nominator and denominator are
given in columns 24 and 25 and should be used for statistical analysis of errors. It is averaged over
the last 10 iterations.

24 Instantaneous denominator of projected energy (HFContribtoE)
This is the instantaneous denominator of the projected energy C0 and equivalent to the reference
weight (column 12). Column 24 and 25 are used to evaluate the other projected energy columns (9,
11, and 23). It is averaged over the last 10 iterations.

25 Instantaneous numerator of projected energy (NumContribtoE)
This is the instantaneous nominator of the projected energy∑

j 6=0
H0jCj (10)

Column 24 and 25 are used to evaluate the other projected energy columns (9, 11, and 23). It is
averaged over the last 10 iterations.

26 Amplitude of reference (HF weight)
Unlike the name suggests, this is the amplitude weight of the reference determinant given by:

|c0|
|Ψ| = |c0|√∑

i |ci|2
. (11)

This means that this column can be obtained by dividing column 12 by column 27.

27 |Ψ| (|Psi|)
Instantaneous L2-norm of the current wavefunction.

|Ψ| =
√∑

i

|ci|2 (12)

28 Expectation value of S2 operator over all determinants (Inst Sˆ2)
Requires the instant-s2-full keyword in the logging block.

39

29 Expectation value of S2 operator over initiator determinants (Inst Sˆ2)
Requires the instant-s2-init keyword in the logging block.

30 Absolute instantaneous projected correlation energy (AbsProjE)
L1-norm of projected correlation energy expression.∑

j 6=0
|H0j |

|Cj |
|C0|

. (13)

31 (PartsDiffProc)
Uninitialised Garbage.

32 Weight of semistochastic space (|Semistoch|/|Psi|)
If SC is the semistochastic or core space, then we have:∑

j∈SC
|cj |2∑

i |ci|2
. (14)

33 Largest spawn per iteration (MaxCycSpawn)
This is the largest spawn per iteration.

34 The number of discarded excitations (InvalidExcits)
This is the number of discarded excitations averaged over the last 10 iterations.

35 The number of valid excitations (ValidExcits)
This is the number of valid excitations averaged over the last 10 iterations.

1.8 Trial wave functions

By default, NECI uses a single reference determinant, |D0〉, in the projected energy estimator, or
potentially a linear combination of two determinants if the the HPHF code is being used.

E0 = 〈D0|Ĥ|Ψ〉
〈D0|Ψ〉

.

This estimator can be improved by using a more accurate estimate of the true ground state, a trial
wave function, |ΨT 〉,

E0 = 〈Ψ
T |Ĥ|Ψ〉
〈ΨT |Ψ〉 .

Such a trial wave function can be used in NECI using by adding the trial-wavefunction option to
the Calc block. You must also specify a trial space. The trial wave function used will be the ground
state of the Hamiltonian projected into this trial space.

The trial spaces available are the same as the core spaces available for the semi-stochastic option.
However, you must replace core with trial. For example, to use all single and double excitations of
the reference determinant, one should use the ‘doubles-trial’ option.

1.9 Sampling excited states

As well as sampling the ground state, NECI can be used to estimate excited-state properties using
an orthogonalisation procedure. Specifically, by performing m FCIQMC simulations simultaneously,
the lowest m energy states can be sampled.

To do this, one must use the mneci compilation. Using dneci is not sufficient.

To specify how many states are to be sampled, one should use the system-replicas option in the
System block of the input file.

40

Then, the orthogonalise-replicas option should be included in the Calc section of the input file. This
will tell NECI to orthogonalise the FCIQMC wave functions against each other. States representing
high-energy wave functions will be orthogonalised against those representing low-energy wave
functions. This prevents higher-energy states being projected to the ground state, and instead
allows excited states to be converged upon.

Also, one must tell NECI how to initialise each FCIQMC wave function. It is a bad idea to start
from single determinants, as many of these will be poor estimates to the desired excited states, and
so convergence will be slow. Instead, one should start from trial estimates to the desired excited
states. These trial states are generated by calculating the lowest-energy states within a subspace.
Thus, one must simply tell NECI what subspace to use. The options available are the same as for
semi-stochastic and trial spaces (see above).

For example, if one wants to initialise from the lowest-energy CISD states, one should use the
doubles-init option in the Calc block. If one wants to start from the lowest-energy states in a
(10, 10) CAS space, you should put cas-init 10 10 in the Calc block.

Also, single-determinant energy estimators can be give poor results for excited states. Instead, trial
wave function-based estimators should be used. This should be done exactly as for the ground state
– see above for more details on this. For example, to use CISD wave functions in the trial energy
estimators, include both the trial-wavefunction and doubles-trial options in the Calc block of the
input file.

For some example excited-state calculations with NECI, see the test_suite/mneci/excited_state
directory and the tests therein.

1.10 Davidson RAS code

NECI has an option to find the ground state of a RAS space using a direct CI davidson approach,
which does not require the Hamiltonian to be stored. This code is particularly efficient for FCI and
CAS spaces, but is less efficient for CI spaces.

To perform a davidson calculation, put
davidson ras1 ras2 ras3 ras4 ras5

in the Methods block, inside the Calc block. The parameters ras1-ras5 define the RAS space that
will be used. These are defined as follows. First, split all of the spatial orbitals into theree sets,
RAS1, RAS2 and RAS3, so that RAS1 contains the lowest energy orbitals, and RAS3 the highest.
Then, ras1, ras2 and ras3 define the the number of spatial orbitals in RAS1, RAS2 and RAS3. ras4
defines the minimum number of electrons in RAS1. ras4 defines the maximum number of electrons
in RAS3. These 5 parameters define the ras space.

This method will allocate space for up to 25 Krylov vectors. It will iterate until the norm of the
residual vector is less than 10−7. If this is not achieved in 25 iterations, the calculation will simply
stop and output whatever the current best estimate at the ground state is.

This code should be able to perform FCI or CAS calculations for spaces up to around 5× 106 or so,
but will probably struggle for spaces much larger than this.

The method has only been implemented with RHF calculations and with Ms = 0.

1.11 Performing error analysis

Data from an FCIQMC calculation is usually correlated. As a result, standard error analysis for
uncorrelated data cannot be used. Instead we perform a so-called blocking analysis (JCP 91, 461).
In this, data is grouped into blocks of increasing size until the data in subsequent blocks becomes
uncorrelated, to a good approximation.

41

A blocking analysis can be performed in NECI in one of two ways. Firstly, a rough blocking analysis
is performed automatically after a job is finished. The final result is output to standard output and
further information about the blocking analysis at various block sizes is output to separate files,
such as Blocks_num and Blocks_denom. This should only be used as a rough and quick estimate as
there are issues with this approach. For example, the analysis starts as soon as the shift is turned
on. This is before the population has stabilised, and so unusual results can occur in the analysis of
the denominator and numerator. Also, data is not taken from the optimal block size.

A better approach for a more careful analysis is to use the blocking script in the utils directory,
called blocking.py. The key command is
./ blocking .py -f start_iter -d24 -d23 -o/ FCIMCStats

This will perform a blocking analysis starting from iteration start_iter. The analysis should be
started only once the energy estimate, (column 11 in FCIMCStats) and the numerator and denominator
(columns 24 and 25) have stabilised and are fluctuating about some final value. Just because the
energy looks stable, it does not mean that the populations is not still growing!

-d24 -d23' tells the script to perform the blocking on columns 25 and 24 of the FCIMCStats file, which
correspond to the numerator and denominator of the energy estimator, respectively. -o/ tells the
script to also provide data for the results of dividing columns 25 and 24, which gives the energy
estimate that we want.

Running this will produce a graph of the errors for both the numerator and denominator as a
function of the number of blocks (and therefore of the block size). As the block size increases, the
error estimates should increase, tending towards the true values. Eventually the estimates will
plateau. This indicates that, at this block length, the data in the blocks are uncorrelated to a good
approximation, and the error estimate calculated is accurate. The data from this block length
should therefore be used.

Each estimate of the error will also have an error on it. As the block length increases this ‘error
on the error’ will increase. One should therefore use the first block length where the plateau is
reached, so as to minimise the error on the final error estimate.

If no plateau is seen in the plot then the simulation has not been run for long enough, and needs to
be continued by restarting from the POPSFILE. It can take on the order of 105 − 106 iterations to
perform an accurate blocking analysis.

The blocking.py script will also output the final estimates on the energy at the different block
lengths. You should find the blocking length where the errors plateau and read of the final estimates
(the rightmost columns) from here.

More information (including example plots, similar to those that blocking.py produces) is available
in Ref [6].

1.12 Using the NECI pylib

A python frontend is available in the neci_guga python library, which is based on the neci build
target (i.e. plain neci, without complex or multi-replica support) and is built by executing

make neci_guga_pylib

in the neci build directory. This will create a python3 library neci_guga.<build-specifier>.so, which
is installed in the python/ subdirectory of the neci build directory.

To use it, load the python subdirectory of the neci build directory into the library path of python,
either by

export PYTHONPATH =< neci_build >/ python : $PYTHONPATH

or by adding
import sys
sys.path. append ('< neci_build >/ python ')

42

to the calling python module or script.

The neci_guga python module can then be loaded in calling python code with import neci_guga and
provides the following functionality:

• neci_guga.init_guga(fcidump_path, S) Takes the desired total spin S and initializes the GUGA
functionality of neci by reading in an existing FCIDUMP (fcidump_path) file.

• neci_guga.clear_guga() Clears all memory and deletes all objects initialized by init_guga, returns
0 on success, 1 else.

• neci_guga.csf_matel(D_i, D_j) Returns the matrix element between D_i and D_j, passed as an
array of the size of the number of electrons in the DefineDet format.

• neci_guga.run_neci(perm) Reads a neci input file neci.inp and an FCIDUMP file in the current
directory, using an orbital permutation perm to re-order the orbitals used for the calculation
(with respect to the FCIDUMP file). Then, a neci calculation with the specified input is run
and the weight of the leading CSF is returned. The permutation is given by specifying the
new position for each orbital, i.e. a permutation python perm = [3, 4, 2, 1] would put orbital
1 in the third position, orbital 2 in the fourth position, orbital 3 in the second position and
orbital 4 in the first position.

1.13 Additional Reading with Technical Details

A list of references can be found in the references section. Here we simply point to some of them of
which may be of interest to the reader.

• The original FCIQMC method is in Ref [3].

• Quite a bit of symmetries and some details on the initiator method that is actually implemented
is in Ref [4].

• Linear scaling algorithm, (uniform) excitation generation and overall algorithm of FCIQMC
is in Ref [2].

• Density matrices, real walker weights and sampling bias is in Ref [9].

• The KP-FCIQMC method is in Ref [1].

• Error (blocking) analysis is described in Ref [6].

Bibliography

[1] N. S. Blunt, Ali Alavi, and George H. Booth. “Krylov-Projected Quantum Monte Carlo”. In:
Phys. Rev. Lett. 115.5 (2015).

[2] George H. Booth, Simon D. Smart, and Ali Alavi. “Linear-Scaling and Parallelizable Algo-
rithms for Stochastic Quantum Chemistry”. In: Mol. Phys. 112.14 (2014), pp. 1855–1869.

[3] George H. Booth, Alex J. W. Thom, and Ali Alavi. “Fermion Monte Carlo without Fixed
Nodes: A Game of Life, Death, and Annihilation in Slater Determinant Space”. In: J. Chem.
Phys. 131.5 (2009), p. 054106.

[4] George H. Booth et al. “Breaking the Carbon Dimer: The Challenges of Multiple Bond
Dissociation with Full Configuration Interaction Quantum Monte Carlo Methods”. In: J.
Chem. Phys. 135.8 (2011), p. 084104.

[5] Deidre Cleland, George H. Booth, and Ali Alavi. “Communications: Survival of the Fittest:
Accelerating Convergence in Full Configuration-Interaction Quantum Monte Carlo”. In: J.
Chem. Phys. 132.4 (2010), p. 041103.

[6] H. Flyvbjerg and H. G. Petersen. “Error Estimates on Averages of Correlated Data”. In: J.
Chem. Phys. 91.1 (1989), pp. 461–466.

43

literature.html

[7] Kai Guther et al. “NECI: N-Electron Configuration Interaction with an Emphasis on State-
of-the-Art Stochastic Methods”. In: J. Chem. Phys. 153.3 (2020), pp. 34107–34131.

[8] Verena A. Neufeld and Alex J. W. Thom. “Exciting Determinants in Quantum Monte Carlo:
Loading the Dice with Fast, Low-Memory Weights”. In: J. Chem. Theory Comput. 15.1 (2019),
pp. 127–140.

[9] Catherine Overy et al. “Unbiased Reduced Density Matrices and Electronic Properties from
Full Configuration Interaction Quantum Monte Carlo”. In: J. Chem. Phys. 141.24 (2014),
p. 244117.

[10] E. Vitale, Ali Alavi, and Daniel Kats. “FCIQMC-Tailored Distinguishable Cluster Approach”.
In: J. Chem. Theory Comput. 16 (2020), pp. 5621–5634.

[11] Eugenio Vitale et al. “FCIQMC-Tailored Distinguishable Cluster Approach: Open-Shell
Systems”. In: J. Chem. Theory Comput. 18 (2022), p. 3427.

[12] Hans-Joachim Werner et al. “The Molpro Quantum Chemistry Package”. In: J. Chem. Phys.
152.14 (2020), p. 144107.

[13] Oskar Weser et al. “Chemical Insights into the Electronic Structure of Fe(II) Porphyrin Using
FCIQMC, DMRG, and Generalized Active Spaces”. In: Int. J. Quantum Chem. 121.3 (2021),
pp. 26454–26467.

[14] Mingrui Yang, Elke Pahl, and Joachim Brand. “Improved walker population control for full
configuration interaction quantum Monte Carlo”. In: The Journal of Chemical Physics 153.17
(2020). Publisher: American Institute of Physics, p. 174103.

44

	Using NECI
	Getting the Code
	BitBucket Repository Access

	NECI Installation
	HDF5
	Documentation
	Basic NECI Tutorial
	Anatomy of an Input File
	Running NECI
	Checking Convergence and Analysing Results
	Continuing a NECI Calculation
	Final Steps

	Calculation inputs
	SYSTEM Block
	CALC Block
	INTEGRAL Block
	Development keywords
	KP-FCIQMC Block
	REALTIME Block
	LOGGING Block
	FCIMCStats output functions

	Output files
	FCIMCStats

	Trial wave functions
	Sampling excited states
	Davidson RAS code
	Performing error analysis
	Using the NECI pylib
	Additional Reading with Technical Details

