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Intr oduction: For electronsin condensednatter it is often desirableto expressthe single-
particle wave functions, ¥; (r), with enegies ¢; in a certain range in terms of a mini-

mal set of state- and enegy-independen orbitals, xrr (r). Here, R spansthe sites, and
L the local symmetry (e.g. L=Im). A few examples: (a) In a crystal, the electrons
belongingto an enegy band which does not overlap ary other band are most simply de-
scribedin termsof the Wannierfunctions, x (r — R), with R spanningthe lattice translations.
(b) Model Hamiltoniansare usually expressedn representationg/hich for the electronsare as-
sumedo beminimalandorthonormal.(c) In adensity-functionbcalculation theuseof aminimal

basissetfor solvingthe Schiddingerequationself-consistentlyould easeheinterpretatiorof the
resultsandspeedup the calculation.For realisticsystemshowever, it is hardto obtaina minimal

basisof usefulaccurag.

We have deriveda generaimethodfor obtainingsuchminimal basissetsfor caseswherethe wave
functionsaresolutionsof a Schibdingerequatiorwhich is locally separable,

HY; (r) = [-A+V (0)] ¥ (r) =&V (r), @)

specifically wherethe potentialhasthe muffin tin form: V' (r) =), vr ([r — R|). Thiswork s
partof anongoingeffort to develop anelectronic-structte methodwhich is generallyapplicable,
intelligible, andcomputationallyfastandaccurate.

A MT potentialdivides spaceinto MT sphereswith radii ar, wherethe potentialis spherically
symmetricandarest,theinterstitial, wherethepotentialis flat (zero).Insideeachsphereandin the
interstitialonemaysolve Schibdingers differentialequation(numerically)for anenegy, ¢, chosen
in therangeof interest.In casetheresultingpartialsolutions (¢, r), canbematchedcontinuously
anddifferentiablyat the spheresthey form a wave function, ¥, (r), with e;=¢. Suchmatching
schemege.g. thoseof WignerandSeitzandof Korringa,Kohn,andRostoler (KKR)) arenotvery
practical,however. Insteadwe wantto usethe ¢ (e, r)’s to constructa setof enegy-independrt
orbitals, (V) (r), which spanary wave function with enegy ¢; in the neighborhoodof N +1
choserenegies, ¢, ..., ey, to within anerror proportionalto (g; — €) ... (g; — ex). Specifically
if theenegy meshis condensedntooneenengy, ¢, theerrorof awave functionwith enegy &; will
be proportionalto (¢; — ¢o)*. Theseorbitalswe call Nth-ordermuffin tin orbitals,or NMTOs.
Note that N doesnot influencethe size of the NMTO basisset, but the rangeof the individual
orbitals.Let usnow work this outin moredetail.

Kink edpartial waves: InsidethespheretR, thepartialsolutionsarepp, (¢, |r — R|) Yz (r/—T{)
= om (e,mr) YL (7r), Wherethe enegy-dependentunctionis the regular solutionof the radial
Schibdinger equation. In the interstitial region, we usethosesolutionsof the wave equation,
(A +e) YR (e,r) =0, whichsatisfythefollowing homogeneouboundarycondition: The pro-
jectionof ¥iy, (e,r) ontod (rp — ag) Y (Fr1) iSOrrdr . As anexample iy, (=0, r) isthe
electrostatigotentialfrom a 2! multipole centeredat R whenall otherspheresairegrounded The
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Yrr (e,r)'sarecalledscreenedsphericalwaves In fact,only thosewith RL correspondingo the
so-calledactivechannelswill be used,andonly the projectionsonto otheractive channels/anish.
For the projectionof the screenedgphericalwave onto aninactive channeltheradial logarithmic
derivative equalsthat of the solutionto the radial Scrodinger equation. We cannow form the
setof so-calledkinked partial waves: The kinked partialwave, ¢ry, (¢,1), iS g (e,7r) YL (FR)
insideits own sphereandfor its own angularmomentum.it is )1, (&, r) in theinterstitial region
and,insidethe sphereat R/, it vanishedor ary other(R’'L'#RL) active channelbut it is propor
tionalto ¢y (¢,7r) Y (Tr) for aninactive channel.As aresult,¢ry, (&,r) is continuougwe
normalizethe radial solutionsof the active channelsuchthat g, (¢, ar) =1) andis a solutionof
Schibdingers equationwith enegy . But it haskinks at the spheresn the active channelsaandis
thereforenot awave function.

Si p kinked partial wave
\ M \ \

0.4

] || \ \
Si «<aq a-s Si «q Si <«a a—- Si «a

Figurel: Sip, -, - . kinkedpartialwave (KPW) andlinearmuffin tin orbital (LMT O).

Thesolid curve in theleft-handpartof Fig. 1 shaws the Si p,.—,—. kinked partialwave for ¢ in the
middle of thevalencebandandfor r alongthe[111]-line in thediamondstructurefrom thecentral
Si atom,throughthe nearestSi neighboy andhalf-way into the back-bondvoid. The othercurves
will beexplainedlater Thekinks atthe a-spheresreclearly seen.Sincethis kinked partialwave

is designedor usein a minimal sp3-basis,only the Si s andp waveswerechoserasactive. The
inactive partialwaves— mostnotably Si d — mustthereforebe provided by thetails of the kinked
partial waves centeredat the neighborsandthis is the reasonfor the strongSi d-characteriseen
insidethe nearest-neighb@phere Hadwe beenwilling to keepSi d-orbitalsin thebasisthe Si d-

channelavould have beenactive sothatonly partialwaveswith [ > 2 would have remainednside
the neighborsphereswherebythe kinked partial wave would have beenmorelocalized. Hence,
the pricefor asmallerbasisis alongerspatialrangeanda strongerenegy dependence.

Kink matrix and matching equations: The centralquantityof the presenformalismis the Her-
mitian kink matrix, whoseelementK /1 gz, (€) is definedto be the kink of ¢gy, (e, r) at the
apr-sphereprojectedonto Yy, (7 /) /a%,. Hence,it specifieshow the Hamiltonian(1) operate®n
the setof kinked partialwaves:

(H—¢)¢Rre(e,r) = — ZR,L, d(rp —ap) Yy (Pr) Krpr re (€) - (2
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Althoughanindividual kinked partialwave is notawave function,ary smoothinearcombination,
> rL¢re (€,1) crei, iS. Schibdingers equatiormaythereforebe formulatedasthe matching-or
kink-cancellatiorcondition:

ZRL Kpp e (6) cpri =0 forall R'L, (3)

which is a setof homogeneou$inear equationsequialentwith the KKR equations.Here, the
indicesrun only over active channels. Sincethe kink-matrix is expensve to compute,it is not
efficientto find aone-electrorenegy from det | K (g;)| =0, andthensolve thelinearequationgor
the correspondingry, ;, but to constructan enegy- and state-independertasissetof NMTOs,
andthensolve the generalizecigervalueproblem,

S LRI Yenns = =3 (dd x5y Yenns forall RT', (@)
resultingfrom the Raleigh-Ritzvariationalprinciple.

MT Os with N=0: Sinceall wave functionswith a certainenegy may be expressedas linear
combinationf the kinked partial waveswith the sameenegy, the MT Oswith N=0 aresimply
the kinked partial waves at the chosenenengy: ngz (r)=¢rr (€0, r). In the basisof these,the
Hamiltonianandoverlapmatricesaregivenby respectiely:

(XO = ol XV) ==K (o) and (x| ) = K (e), (5)

asmay be found from Eq.(2) andthe normalization.Here,-=9/0e. The enegy solutionsof the
generalizeckigemwvalue problem (4) have errorsproportionalto the squae of the wave-function
errors,thatis, « (¢; — ¢9)* whenN =0. This alsofollows trivially from the factthat Eqs.(4)—(5)
aremerelythe enepgy-linearizatiomn of the matchingequationg3).

Green matrix and MT Os with N> 0: In orderto constructMTOs with N >0, it is use-
ful first to define a Green matrix as the inverseof the kink matrix: G (¢) = K (¢)~'. As
seenfrom (3), its polesare the one-electrorenegies. Next, by an equationof the usualtype:
(H —¢)vgrL (e,r) = =6 (rr — agr) Y (Tr), we definea Greenfunction, vzy, (¢, r), which has
oneof its spatialvariablesconfinedto the a-spheresi. e. r' — R L. Considered functionof r, this
confinedGreenfunctionis a solutionwith enegy ¢ of the Schibdingerequation gxceptatits own
spheraandfor its own angulamomentunwhereit hasakink of sizeunity. Thiskink becomesay-
ligible comparedo the valueof thefunctionwhene is closeto a one-electrorenegy because¢he
Greenfunctionhasa polethere.Equation2) shavs thaty (e,r) = ¢ (¢,r) G (¢). Here,andin the
following, lower-casdettersdenotevectorsanduppercasematricede, ¢, RL, andN arenumbers,
though).The confinedGreenfunctionis thusfactorizedinto a Greenmatrix, G (¢), which hasthe
full enegy dependenceanda vectorof functions,¢ (&, r), which hasthefull spatialdependence
andaweakenegy dependenceThekind of enegy rangewe areconsiderings suchthatfor two
enegieswithin therange iy, (¢,r) andégr, (€', r) arenever orthogonal Finally, we wantto fac-
torizether ande-dependenciesompletelyand,hence approximatehe confinedGreenfunction
by x¥) (r) G (¢). Subtractingirom the Greenfunction a functionwhich is analyticalin &, obvi-
ouslyproducesanequallygoodGreerfunction,¢ (e,r) G () — w™ (e,r) = xV) (e,1) G (¢), in
the senseahatbothyield the sameSchibdingerequatim solutions. If we canthereforedetermine
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thevectorof analyticalfunctionsin suchawaythateachXE,%NL) (e,r) takesthesame/alue,xg) (r),
atall N +1 enegies, ¢, ..., en, then

X (e.x) = Xy (1) + O (e — o) oo (e — €n)) s (6)

and, hence,x"¥) (r) is the setof NMTOs. Now, sincex) (¢p,r) = ... = ™) (ey, 1), the
Nth divided differenceof x(V) (,r) G (¢) equalsxy(™ (r) timesthe Nth divided differenceof
G (g). Moreover, if weletw®™) (¢, r) beapolynomialin enegy of (N-1)stdegree,its Nth divided
differenceon the e, ..., ey-mesh,ANw®) (r) /A [0...N], will vanish. We have thereforefound
thefollowing solutionfor the NMTO set:

N

Ny AN (r)G [ ANG 17! N
KM (@) = A0...N] [A[O...N]] =2 dlenn) LY = 0

n=0

bley.r) 4 A[%QN] (B®) = ex) 4t % (BD - ar). (B - ey).

Here, the secondexpressionmay be interpretedas Lagrange interpolation of the enepy-
dependencef the kinked partial-wave set,but with the weights,L%N), beingenegy-independn
matricesratherthan Nth-degreescalarpolynomialsin enegy. Similarly, the last expressiomrmay
beinterpretedasNewton interpolation(Taylor expansionfor a condensednesh)with the enegies
substitutecby (non-commutingand non-Hermitian)enegy-independnt matrices, E(™). Using

thewell-known expression:

ANG i G (€n) 1 dVG(e)
2o v o ,
A[0...N] = Hﬁzo#n (€n — €m) Nl deN |

for adivideddifference thesematricesareseento begivenby:

—1
L) — G (en) [ ANG ]
" HT]XZOﬁén (671, - Em) A [ON] ’
ANﬁlG ANG -1 N
"= - (V)
: R A [ON - 1] |:A [0N]:| ano enLn )

in termsof the valuesof the Greenmatrix on the enegy mesh. Note that ZT]YZO L%N):l. From

the Newton expression(7), we realizethatthe NMTO equalsa kinked partial wave at the same
siteandwith the sameangularmomentumplus a smoothingcloud of enegy-deriative functions
centeredat all sitesandwith all angularmomenta(NMTOs with N > 0 are smoothbecauseahe
kinks (H — ¢) ¢ (e,r) G (¢) areindependenef ). In theright-handsideof Fig. 1, thesolid curve

is the MTO with N=1, thelinear MTO (LMT O), andthe dashedcurwve is the MTO with N=0,

shavn by the solid curwe in the left-handside. Obviously, longer spatialrangeis the price for

spanningvave functionsof awider enegy range.This increaseof rangeandsmoothnessvith N,

follows from therelation:

(H = en) (™ () = XV (1) (BO) — e ), (®)
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which alsoshaws thatthe enegy matricesaretransfermatricesbetweenNMT O setsof different
order

Variational eigervalue equations: Since from Eq.(6), the NMTO set has errors
Hffzo (e; — €5,), solution of the variational eigevalue equations(4) will yield enegies with
errorsc HTJLV:o (i — €n)*. To exploit this, we needthefollowing expressions:

N -1 2N N -1
<X(N) ‘H_eN‘X<N)> - _[AA[O...C]:V]} A[[O%N—Gl]N} [A?o..?ﬂ]
N -1 A2N+1 N -1
<X(N)‘X(N)> - _[AA[O...CJ;VJ AA[[O...]\% [AA[O...(J;V]]

for the Hamiltonianand overlap matrices. Here, AM*N+1G /A [[0..M] N] is the (M + N + 1)th
derivative of that polynomialof degreeM + N + 1 which takesthe valuesGy, ..., Gy attheN+1
meshpointsandthe valuesGy, .., Gy of the first-derivative at the first M +1 points. Note that
this Hermiteinterpolationof G (¢) is not supposedo approximate= (¢), which usuallyhaspoles
inside the mesh;the physicalquantitiesare ratios of enegy derivatives of suchpolynomial‘ap-
proximations’. The Hamiltonianandoverlapmatricesmaybeexpressedn termsof thevaluesand
first enegy derivatives at the meshof the smoothfunction K (¢) =G (¢) ™!, but asN increases,
theseexpressiondecomencreasinglycomplicated.

As afirst example we considerthe simplestpossiblel x 1 Greenmatrix, G () =3 _; (¢ — ) 1,

whichis thatof a single,normalizedkinked partialwave: Thevariationalenegy relative to e ;- can
beworkedoutto be:
2N 2N+1 —117N-1 -2 N -2

(e /ﬁ[[o...zvcf] =2 —en) Ilhzo (55 —€n) /Zj [0 (ej —en)”" , andthe
deviation from anexactresult,e; — e, istherefored™ ., (e — en) [Tn_q (ei — €n)* / (5 — €n)”,
to leadingorder Thisis in accordwith the openingstatemenof this subsectionFig. 2 shavs how
for thetwo-level systemG (¢) :g + :11 thisvariationalenegy switchesfrom 0 to 1 asthecentey
x, of themeshsweepdrom —1to +2. Thevariouscurvesreferto N=0, 1, 2, and4. For N > 0, we
usedmeshef total width 0.4. We seethatthe switchingcurvessharperup asN increasesand
thatgoodresultsareobtainedalreadywith N =1, thechord-LMTO.

11

Figure2: Variationalenegy-estimates
for a two-level model (¢; =0, 1) using
single NMTOs with N=0,1,2, and 4
as functions of the position, x, of the
centerof theenegy mesh.

-1 0 1 X 2

Density-functional calculations: In Fig. 3 we shav for GaAsthe LDA valenceand conduction
bands,18 of which fall in the 35eV-rangedisplayed. The solid curves are the exact bandsand
the dottedcurvesarethe bandscalculatedvariationallyusinga basisof Gasp3d® andAs sp>d® f7
quadraticmuffin-tin orbitals (QMTOs) with the threeenegiesindicatedin the right-handpanel.
The goodaccurag achieved with this basisof merely 25 orbitals/celldemonstratethe power of
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our method.Notethatevenfor thislarge enegy range ho radialquantumnumbersareneededIn
most caseqself-consistenc iterations)one merely needsto describethe occupiedstates which
for GaAsarethefive semi-coreéGa3d bandsat-15 eV, the As 4s-like bandaround-11 eV, andthe
threevalencebandsof dominantGa4s4p andAs 4p charactergxtendingfrom -7 to 0 eV. With
aminimal Gasp3d® As sp®> NMTO set,we find typical accuraciesn the sumof the one-electron
enegies of 50 and 5 meV/GaAsrespectiely for LMTOs (¢y =~-15 eV, -5< ¢ <-2 eV) and
QMTOs(ey =-15€eV, ¢; =-11eV,-5< e <-2eV).

Energy (eV)

Figure 3: Band structureof GaAs in the LDA,
calculated with the variational QMTO method

: i (dashed),as comparedwith the exact KKR result
.15 L (solid).

Wannier-lik e orbitals: For cupratehigh-temperaturesuperconductorspne needsa one-band
HubbardHamiltonianwith realistic, material-dependemtarameters. The conductionband ob-
tainedfrom angle-resoled photoemissiongr with the LDA (Fig. 4), hasanti-bondingO p,—Cu
dy2_,2—0 p, characterbut it crossespr hybridizeswith a multitude of otherbandsbelow the
Fermilevel (~-0.7 eV), so thatits Wannierfunction is long rangedand dependson irrelevant
details. Ratherthanthe Wannierfunction, onethereforewantsan exponentiallydecayingorbital,
which describeghebandin arangearoundthe Fermilevel. Thedottedbandin Fig. 4 resultsfrom
an N =3 variationalcalculation,in which only the Cu d,»_,2-channelwastaken asactve. It is
seerto give asuperbdescriptionof the conductiorbandin theregionswherethis bandis isolated,
including the extendedsaddle-pointat X, and a smoothinterpolationbelov -1.4 eV wherethe
bandis hybridized.The Fouriertransformyieldsthe hoppingintegrals.



Energy (eV)

Figure 4: Band structureof CaCuQ with a 7°-buckle, calculatedin the LDA with a single, Bloch Cu
dy2_,2» CMTO (dotted)compareavith thefull bandstructure(solid).

For calculating the Coulomb interaction and, more generally for multiband model Hamil-

tonians, minimal orthonormalbasesare required. With NMTOs, thereis an efficient way
to generateorthonormalsets, which goesvia setsof so-callednearly orthonormal NMTOs.
Before we indicate how this works, we recall that Lowdin orthonormalization is:

X (r) =x (r) (x | x)™?, wherethe x (r)’s are normalizedand where the matrix (x | x)~"/?

is obtainedby Taylorexpansionin thenon-orthonormalityl — (x | x), whichis thereforerequired
to be small. We also state,without proof, thatthe NMTO set, () (r), derived from the set,
b (e.,x)=¢ (e,r) T (¢), of transformedkinked partial waves, is a linear transformationof the
original set, (™) (r), andis given by hattedversionof expressiong7). It now turnsoutto be a
simplematterto find thetransformation]’ (¢), which makesthesetsx ) (r) nearlyorthonormal,
in the sensethat (xM -1 | Y)Y =1 for 1 < M < N, andfor instances (e, r) =X (r) is
normalized.In sucharepresentationx"™) | Y(¥)) is sufficiently closeto the unit matrix thatthe
non-orthonormalitycan be neglected,andif not, Lowdin orthonormalizatiorwill converge fast.
Theaddedbonusof a nearlyorthonormakepresentatiois thatits enegy matricesareHamiltoni-
ans,asmay be seerfrom therelation: () — ¢;,= (x(M) | >“<(M*1)>_1 (XM |H — epr| xID),

derivedfrom Eq.(8).

Generating the kink matrix: Having seenthat both the NMTOs and the Hamiltonian and
overlap matrices are expressedin terms of one matrix, G (¢)=K (¢) ', let us finally in-
dicate how the kink matrix is generated. The elementswith R#£R’ of the bare struc-
ture matrix, By, p (6) = Y 4wi™ = Cppurmy (kR = R/|) Y7, (R - R/), spec-
ify how the spherical waves, n; (krg) Yz (7r), are expandedin regular spherical waves,
Jv (krr) Y (Frr).  The expansionsof the screenedspherical waves are specified by the
screenedtructurematrix, B* (), which is obtainedby matrix inversionof B° (&) +  cot a ().
Here, B%L,,RL (e)=0 and kcota (e) is a diagonal matrix with apry (¢) being the hard-
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sphere phase shift [tan ag; (¢) =j; (kar) /n (kar)] if the channelis actve, and the real
phaseshift ng; (¢) if the channelis inactve. With appropriatedivision into actve and in-
active channels, B (¢), definedvia B*(¢)™! = B%(e)™' + x~'tana(¢), hasshort spa-
tial rangeand no polesin the enegy-rangeof interest. Finally, the kink matrix is K (¢) =
—[kn (ka)] "t [B® (¢) + K cotn® ()] [kn (ka)]~*, wheren® (¢) is the real phaseshift in the
mediumof harda-spherestan n® (¢) =tann () — tan a (¢)].

Overlapping MT-wells: In closing, a point of considerablepractical importance. The
KKR and NMTO formalisms hold not only for straight MT-potentials, but for superpo-
sitions of overlapping MT-wells, to first order in the potential-werlap. In order to ex-

ploit this, we needto use kinked partial waves defined as in the left-hand part of Fig. 1:

orr (e,1) =¢r (e,7R) —¢% (€,7R)] YL (TR) +¥RL (€,1). Here,p (¢, 7) (dot-dashedjs thera-

dial solutionfor the centralMT-well, which extendto the radiuss (> a), and¢° (¢, r) (dotted)
is the phase-shiftedvave proceedingsmoothlyinwardsfrom s to the centrala-sphere whereit

is matchedwith a kink to the screeneagphericalwave ¢ (dashed).Radialoverlapsof up to 30%
may betreatedwithout changinghe formalism,andoverlapsup to 60% maybetreatedf asimple
kinetic-enegy correctionis included. The NMTOsgeneratedrom suchpotentialsareaccurateor

all casesve have consideredofar.



