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The electrical resistivity � of a metal is usually interpretedin terms of a mean free path � ,
i. e., theaveragedistanceanelectrontravelsbeforeit is scattered.As thetemperature� is raised,� is increasedand � is reduced.In this semiclassicalpicture,however, � cannotbecome(much)

shorterthanthedistance� betweentwo atoms.Theresistivity shouldthensaturateat a valuecor-

respondingto ����� . This hasbeenconfirmedfor many systemsandwasconsidereda universal

behavior. Recently, a few apparentexceptionswerefound,e.g., alkali-dopedfullerenesandhigh-

temperaturesuperconductors.Thesesystemscould,however, bein exotic stateswhereonly asmall

fractionof theconductionelectronscontributeto theconductivity, and ����� couldthenstill besat-

isfied. It is thereforeinterestingto askif thereis somegeneralprinciple, limiting the resistivity

of a metallicsystemat large � . To addressthis problem,we have constructeda modelof 	�

����� ,
wheretheelectronsarescatteredby intramolecularvibrations.For this modelwe have performed

anessentiallyexactcalculationof theresistivity, usingaquantumMonteCarlo(QMC) method.

Theconductionin 	�

����� takesplacein apartlyfilled ����� band.The � -dependentpartof theresis-

tivity is assumedto bedueto scatteringagainstphononswith ��� symmetry. Wethereforeconsider

a modelwith a threefolddegenerate����� level anda fivefold degenerate��� Jahn-Teller phononon

eachmolecule,thehoppingbetweenthemoleculesandthecouplingbetweentheelectronsandthe

phonons.Thehoppingtakesinto accountthatthereis anorientationaldisorderof themolecules.

We have performeda finite temperaturecalculation,using a determinantalQMC method. The

current-currentcorrelationfunctionis calculatedfor imaginarytimesanda transformationto real

frequenciesis made,usinga maximumentropy method. This givesthe optical conductivity and

the resistivity. The QMC methodhasno ‘sign-problem’,andthe resistivity of the modelcanbe

calculatedessentiallyexactlydown to quitesmall � .

Figure1: The resistivity asa function of �
accordingto the full QMC calculation, the
Boltzmann equation(Bloch-Gr̈uneisen)and
the bubble diagram. The symbol � shows
the � (� =0) dueto the orientationaldisorder.
The figure illustrates that � can become
extremelylarge,thatthebubblecalculationis
quiteaccurateandthat thereis no qualitative
break-down of the Boltzmann equation at
high temperatures.

Figure1 shows the resistivity for a clusterof 48 ����� moleculeswith thedimensionlesselectron-

phononcouplingconstant� = 0.53andthephononfrequency �! #" = 0.2eV. TheQMC calculation

(full line) showsthattheresistivity canbecomeverylarge,correspondingto ��� 0.7Å at � = 0.5eV.
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Thisshouldbecomparedwith theseparation$ = 10Å betweentwo %�&�' molecules,i. e., (�)*$ . By

consideringalsounrealisticallylargetemperatures,weemphasizethelackof ageneralprincipleof

thetype (�+�$ .
To interprettheseresultswe have useda diagrammaticapproach.In theKuboformalismthis re-

quiresthe calculationof a bubblediagramincluding vertex corrections(seeFig. 2a)). We have

neglectedthevertex andcalculatedthe bubblediagramusingtheelectronGreen’s function from

the QMC calculation. The resultingresistivity (dashedline in Fig. 1) is practically identical to

theQMC result,justifying theneglect of vertex correctionsfor thepresentmodel. It wasshown

by Holsteinthat in the limit of a broadelectronicband,all vertex correctionsexcept ladderdia-

gramscanbeneglectedandthata Boltzmannequationcanbederived.Holstein’s derivationis not

strictly valid for thenarrow bandconsideredhere(width , 0.6eV), but our calculationsshow that

his argumentsarestill qualitatively right. For our modelwith a - -independentelectron-phonon

coupling,even the ladderdiagramscanbe neglected. Essentiallyfollowing Holsteinwe obtain

approximatelyaBoltzmannlike conductivity
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where 6 / 4 2 is the densityof states,O is the Fermi function,
@ / 4 2 is the electronself-energy, P�Q

is thecurrentmatrix elementfor a statewith the label R andtheenergy S�Q . We interpretIm
@

as

the inverseof therelaxationtime. For a large 1 , Im
@

becomescomparableto or larger thanthe

one-particlebandwidth andthequasi-particleconceptbreaksdown.

Figure2: Diagramsfor thecurrent-currentresponsefunctiona)andtwo approximationsto theelectronself-
energy b) andc). Thefull anddashedlinesrepresentelectronandphononGreen’sfunctions.Self-consistent
Green’s functionsareusedin a)but not in b) or c).

The resistivity thusdependscrucially on
@

. To understandits behavior, we consideredthe dia-

gramin Fig. 2b) calculatedwith bareGreen’s functionsandfor simplicity neglectingthe orbital

degeneracy
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is theBoseoccupationnumber. For large s , thenumberof phononstvu becomeslarge,leadingto

a largeIm w , asmall x anda large y .

It is interestingto comparethis with the resistivity dueto theelectron-electronscattering.Using

the dynamicalmean-fieldtheory(DMFT) we have calculatedthe resistivity for a nondegenerate

Hubbardmodel with the band width z and a simple cubic lattice with the lattice parameter

a= 1 Å. We focusedon thehalf-filled case,which is relevant for {�|
}�~�� , andwe do not consider

thecaseof adopedMott insulator. Figure3 shows y���s3� for differentvaluesof theon-siteCoulomb

interaction � . For ����z the systemis a metaland y���s3� grows with s , while for ����z it is

an insulatorand y���s3� decreaseswith s . In the metallic casey���s3� saturatesat y�� 0.4 m� cm,

which correspondsto � / ��� 1/3. Thus,in contrastto theelectron-phononscatteringcase,electron-

electronscatteringdoesnot leadto an � which is very muchsmallerthan � in themetallicstateof

thehalf-filled Hubbardmodel.

Figure 3: The resistivity for the
nondegenerate Hubbard model for
different values of the Coulomb
repulsion � . The figure illustrates
how the resistivity saturatesfor large�

in the electron-electronscattering
case.

To understandthis,wehavestudiedtheelectronself-energy w to secondorderin � , sincew deter-

minesy in theDMFT. For low s , thereis little scatteringdueto thesmallphasespaceavailable,as

controlledby theFermifunctions.As s increases,theavailablephasespacegrowsandy increases.

However, for large s , y essentiallysaturates,sincetheFermifunctionsapproacha constantvalue.

This is in strongcontrastto theBoseoccupationnumbers(Eq.(3)),thatincreasewith temperature.

Thequalitative differencebetweenthetwo scatteringmechanismsfor large s canthenbetracedto

thedifferencebetweenfermionsandbosons.

Wehave alsoaddressedthevalidity of theBoltzmannequationfor thecaseof theelectron-phonon

scatteringin view of ����� . We have calculatedthe resistivity using the Ziman solution of the

Boltzmannequation(Bloch-Gr̈uneisen)andaddedtheresistivity dueto theorientationaldisorder

asa s -independentcontribution (dottedline in Fig. 1). Although the Boltzmannresult is larger

thantheQMC resultfor large s , thereis noqualitativebreakdown of theBoltzmannequationeven
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when ���*� . Thejustificationfor theBoltzmannequationin thelimit ���*� is not thesemi-classical

derivation,but the (approximate)derivation from the full quantummechanicalKubo formulation

(Eq.(1)). The properlanguagein this limit is not in termsof a very shortmeanfree path,but in

termsof avery broadspectralfunction,asdiscussedabove.

TheQMC calculationgivesanapproximatelylinear � dependence.This agreeswith theexperi-

mentalresultthat � is lineardown to about100–200K. Theresultmayseemsurprising,because

at small � theprobabilityof exciting finite energy phononsis exponentiallysmallasis thecontri-

bution to � . Calculatingthebubblediagramwith theQMC electronGreen’s functionalsogivesa

linearbehavior, while theuseof aGreen’s functionwith theself-energy in Fig. 2b)givesanexpo-

nentiallysmall contribution. TheQMC Green’s functionalsoinvolvesprocesseslike in Fig. 2c),

wherea virtual phononis createdfollowedby thedecayof this phononinto anelectron-holepair.

Theexcitationenergy of suchapair canbearbitrarily small,which leadsto a � which is quadratic

in � . In ourmodelthisgoesover to anapproximatelylinearbehavior alreadyfor very small � .
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