Resistivity of metallic fullerenes: isthere alower limit to the mean
free path ?
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The electrical resistvity p of a metal is usually interpretedin terms of a meanfree path I,

i. e.,the averagedistancean electrontravels beforeit is scattered As thetemperaturd' is raised,
p is increasedand! is reduced.In this semiclassicapicture, however, [ cannotbecome(much)
shorterthanthe distanced betweenwo atoms.Theresistvity shouldthensaturateat a valuecor-

respondingo [ ~d. This hasbeenconfirmedfor mary systemsandwasconsidereda universal
behaior. Recentlyafew apparentexceptionswerefound,e.g., alkali-dopedfullerenesandhigh-

temperatursuperconductorslhesesystemsould,however, bein exotic statesvhereonly asmall
fractionof the conductiorelectronscontritute to the conductvity, and! > d couldthenstill be sat-
isfied. It is thereforeinterestingto askif thereis somegeneralprinciple, limiting the resistvity

of ametallicsystematlargeT". To addresghis problem,we have constructeda modelof A3Cgp,

wherethe electronsarescatteredy intramoleculawibrations. For this modelwe have performed
anessentiallyexact calculationof theresistvity, usinga quantumMonte Carlo(QMC) method.

Theconductionin A3Cgq takesplacein apartlyfilled t1,, band. The T-dependenpartof theresis-
tivity is assumedo bedueto scatteringagainsiphononswith H, symmetry We thereforeconsider
amodelwith athreefolddegenerate;,, level anda fivefold degeneratel, Jahn-Eller phononon

eachmolecule the hoppingbetweerthe moleculesandthe couplingbetweerthe electronsandthe

phonons.Thehoppingtakesinto accounthatthereis anorientationaldisorderof the molecules.

We have performeda finite temperaturecalculation, using a determinantaQMC method. The
current-currentorrelationfunctionis calculatedor imaginarytimesanda transformatiorto real
frequencieds made,usinga maximumentroy method. This givesthe optical conductvity and
theresistvity. The QMC methodhasno ‘sign-problem’,andthe resistvity of the modelcanbe
calculatedessentiallyexactly down to quitesmall 1.

Figurel: Theresistiity asa functionof T
accordingto the full QMC calculation, the
Boltzmann equation (Bloch-Griineisen)and
the bubble diagram. The symbol x shavs
the p(T'=0) dueto the orientationaldisorder
- The figure illustrates that p can become
extremelylarge, thatthe bubblecalculationis
quite accurateandthatthereis no qualitative
®pn=0.2 eV - break-davn of the Boltzmann equation at
0 K- o . . . hightemperatures.
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Figurel shaws theresistvity for a clusterof 48 Cgy moleculeswith the dimensionleslectron-
phononcouplingconstantA = 0.53andthe phononfrequeny w,;, = 0.2 eV. The QMC calculation
(full line) shavsthattheresistiity canbecomeverylarge,correspondingo ! ~0.7A at7 =0.5eV.
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This shouldbe comparedwith the separationl = 10 A betweertwo Cg, moleculesj. e.,l < d. By
consideringalsounrealisticallylargetemperaturesye emphasiz¢he lack of agenerabprinciple of
thetypel 2 d.

To interprettheseresultswe have useda diagrammatiapproach.In the Kuboformalismthis re-
quiresthe calculationof a bubble diagramincluding vertex corrections(seeFig. 2a)). We have
neglectedthe vertex and calculatedthe bubble diagramusingthe electronGreens function from
the QMC calculation. The resultingresistvity (dashedine in Fig. 1) is practicallyidenticalto
the QMC result, justifying the neglect of vertex correctionsfor the presentmodel. It wasshavn
by Holsteinthatin the limit of a broadelectronicband,all vertex correctionsexceptladderdia-
gramscanbe ngglectedandthata Boltzmannequationcanbe derived. Holsteins derivationis not
strictly valid for the narrav bandconsideredere(width ~ 0.6 eV), but our calculationsshawv that
his agumentsare still qualitatively right. For our modelwith a g-independentlectron-phonon
coupling, even the ladderdiagramscan be neglected. Essentiallyfollowing Holsteinwe obtain
approximatelya Boltzmannlik e conductvity
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where N (w) is the densityof statesf is the Fermifunction, 3(w) is the electronself-enegy, j
is the currentmatrix elementfor a statewith the labelk andthe enegy ¢.. We interpretim X as
the inverseof therelaxationtime. For alarge 7', Im 3 becomesomparablédo or largerthanthe
one-particldbandwidth andthe quasi-particleconceptreaksdown.
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Figure2: Diagramsfor thecurrent-currentesponséunctiona) andtwo approximationso theelectronself-
enegy b) andc). Thefull anddashedinesrepresenélectronandphononGreens functions.Self-consistent
Greens functionsareusedin a) but notin b) or c).

The resistvity thusdependsrucially on X. To understandts behaior, we consideredhe dia-
gramin Fig. 2b) calculatedwith bareGreens functionsandfor simplicity neglectingthe orbital
degenerag

W — Wph — €q W + Wph — Eq

2D (k,w) = ¢2 Z [nB(wph) +1— f(eq) n np(wpn) + f(eq) _/ )

whereg is the electron-phonoicouplingconstantand
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is the Boseoccupatiomumber For large T, the numberof phononsng becomedarge, leadingto
alargelm 33, asmallo andalarge p.

It is interestingto comparethis with the resistvity dueto the electron-electrorscattering.Using
the dynamicalmean-fieldtheory (DMFT) we have calculatedthe resistvity for a nondgenerate
Hubbardmodel with the bandwidth W and a simple cubic lattice with the lattice parameter
a=1 A. We focusedon the half-filled casewhich is relevantfor A;Cg, andwe do not consider
thecaseof adopedMott insulator Figure3 shaws p(T') for differentvaluesof theon-siteCoulomb
interactionU. For U < W the systemis a metaland p(7") grows with 7, while for U > W it is
aninsulatorand p(7') decreasesvith T'. In the metallic casep(7T’) saturatesat p ~ 0.4 m{2cm,
which corresponds$o I/a = 1/3. Thus,in contrasto the electron-phonoscatteringcase glectron-
electronscatteringdoesnot leadto an! which is very muchsmallerthana in the metallic stateof
the half-filled Hubbardmodel.
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To understandhis, we have studiedthe electronself-enegy ¥ to secondrderin U, sinceX. deter
minesp in theDMFT. Forlow T, thereis little scatteringdueto thesmallphasespaceavailable,as
controlledby theFermifunctions.As 7' increasegheavailablephasespacegrovs andp increases.
However, for large T', p essentiallysaturatessincethe Fermifunctionsapproacha constanvalue.
Thisis in strongcontrastio the BoseoccupatiomumbergEqg.(3)),thatincreaseawith temperature.
Thequalitatve differencebetweerthetwo scatteringnechanismsor large T’ canthenbetracedto
thedifferencebetweerfermionsandbosons.

We have alsoaddressethevalidity of the Boltzmannequationfor the caseof theelectron-phonon
scatteringin view of [ < d. We have calculatedthe resistvity usingthe Ziman solution of the
Boltzmannequation(Bloch-Giiineisen)andaddedthe resistvity dueto the orientationaldisorder
asa T-independentontrikution (dottedline in Fig. 1). Although the Boltzmannresultis larger
thanthe QMC resultfor largeT’, thereis no qualitative breakdown of the Boltzmannequationeven
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whenl < d. Thejustificationfor the Boltzmannequationn thelimit [ < d is notthesemi-classical
derivation, but the (approximatederivation from the full guantummechanicaKubo formulation
(Eq.(1)). The properlanguagen this limit is not in termsof a very shortmeanfree path, but in
termsof avery broadspectrafunction,asdiscussedbove.

The QMC calculationgivesan approximatehinearT" dependenceThis agreeswith the experi-
mentalresultthat p is linear down to about100—-200K. The resultmay seemsurprising,because
atsmall T the probability of exciting finite enegy phononsgs exponentiallysmallasis the contri-
bution to p. Calculatingthe bubblediagramwith the QMC electronGreens functionalsogivesa
linearbehaior, while the useof a Greens functionwith the self-enegy in Fig. 2b) givesanexpo-
nentially small contrikution. The QMC Greens function alsoinvolves processetike in Fig. 2¢),
wherea virtual phononis createdollowed by the decayof this phononinto anelectron-holeair.
Theexcitationenegy of sucha pair canbe arbitrarily small,which leadsto a p whichis quadratic
in T". In our modelthis goesover to anapproximatelfinearbehaior alreadyfor very smallT'.



