Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide.

Mishra S. K., Satpathy S., Jepsen O.

Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA;
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany

The electronic structures of the two thermoelectric materials Bi2Te3 and Bi2Se3 are studied using density-functional theory with the spin-orbit interaction included. The electron states in the gap region and the chemical bonding can be described in terms of ppa interaction between the atomic p orbitals within the 'quintuple' layer. For Bi2Se3, we find both the valence-band maximum as well as the conduction-band minimum, each with a nearly isotropic effective mass, to occur at the zone centre in agreement with experimental results. For Bi2Te3, we find that the six valleys For the valence-band maximum are located in the mirror planes of the Brillouin zone and they have a highly anisotropic effective mass, leading to an agreement between the de Haas-van Alphen data for the p-doped samples and the calculated Fermi surface. The calculated conduction band, however, has only two minima, instead of the six minima indicated from earlier experiments. The calculated Seebeck coefficients for both p-type and a-type materials are in agreement with the experiments.

A full reprint of this paper is available as postscript or PDF file from the IOP WWW-Server .
 

Journal of Physics: Condensed Matter, 9 461-470, 1997.


Max-Planck Institut für Festkörperforschung;
Postfach 80 06 65   D-70506 Stuttgart