subroutine determ_proj_approx()
! This subroutine gathers together partial_determ_vecs from each processor so
! that the full vector for the whole deterministic space is stored on each processor.
! It then performs the deterministic multiplication of the projector on this full vector.
use FciMCData, only: SemiStoch_Comms_Time
use FciMCData, only: SemiStoch_Multiply_Time
use Parallel_neci, only: MPIBarrier, MPIAllGatherV
use DetBitOps, only: DetBitEQ
integer :: i, j, ierr, run, part_type, c_run
character(*), parameter :: t_r = "determ_proj_approx"
if (.not. t_global_core_space) then
call stop_all(t_r, "Cannot do approximate projection with core-space replicas")
end if
associate(rep => cs_replicas(core_run))
call MPIBarrier(ierr)
call set_timer(SemiStoch_Comms_Time)
call MPIAllGatherV(rep%partial_determ_vecs, rep%full_determ_vecs, &
rep%determ_sizes, rep%determ_displs)
call halt_timer(SemiStoch_Comms_Time)
call set_timer(SemiStoch_Multiply_Time)
if (rep%determ_sizes(iProcIndex) >= 1) then
! For the moment, we're only adding in these contributions when we need the energy
! This will need refinement if we want to continue with the option of inst vs true full RDMs
! (as in another CMO branch).
! Perform the multiplication.
rep%partial_determ_vecs = 0.0_dp
#ifdef CMPLX_
do i = 1, rep%determ_sizes(iProcIndex)
do j = 1, approx_ham(i)%num_elements
rep%partial_determ_vecs(min_pt, i) = rep%partial_determ_vecs(min_pt, i) &
- Real(approx_ham(i)%elements(j)) &
* rep%full_determ_vecs(min_pt, approx_ham(i)%positions(j)) &
+ Aimag(approx_ham(i)%elements(j)) &
* rep%full_determ_vecs(max_pt, approx_ham(i)%positions(j))
rep%partial_determ_vecs(max_pt, i) = rep%partial_determ_vecs(max_pt, i) &
- Aimag(approx_ham(i)%elements(j)) &
* rep%full_determ_vecs(min_pt, approx_ham(i)%positions(j)) &
- Real(approx_ham(i)%elements(j)) &
* rep%full_determ_vecs(max_pt, approx_ham(i)%positions(j))
end do
end do
#else
do i = 1, rep%determ_sizes(iProcIndex)
do j = 1, approx_ham(i)%num_elements
rep%partial_determ_vecs(:, i) = rep%partial_determ_vecs(:, i) &
- approx_ham(i)%elements(j) * rep%full_determ_vecs(:, approx_ham(i)%positions(j))
end do
end do
#endif
! Now add shift*full_determ_vecs to account for the shift, not stored in
! approx_ham.
#ifdef CMPLX_
do i = 1, rep%determ_sizes(iProcIndex)
do part_type = 1, lenof_sign
rep%partial_determ_vecs(part_type, i) = rep%partial_determ_vecs(part_type, i) &
+ DiagSft(run) * rep%full_determ_vecs(part_type, i + rep%determ_displs(iProcIndex))
end do
end do
#else
do i = 1, rep%determ_sizes(iProcIndex)
rep%partial_determ_vecs(:, i) = rep%partial_determ_vecs(:, i) &
+ DiagSft * rep%full_determ_vecs(:, i + rep%determ_displs(iProcIndex))
end do
#endif
! Now multiply the vector by tau to get the final projected vector.
rep%partial_determ_vecs = rep%partial_determ_vecs * tau
do i = 1, rep%determ_sizes(iProcIndex)
do part_type = 1, rep_size
if (tSkipRef(run) .and. DetBitEQ(CurrentDets(:, rep%indices_of_determ_states(i)), &
iLutRef(:, run), nIfD)) then
rep%partial_determ_vecs(part_type, i) = 0.0_dp
end if
end do
end do
end if
call halt_timer(SemiStoch_Multiply_Time)
end associate
end subroutine determ_proj_approx