RunRPA_QBA Subroutine

public subroutine RunRPA_QBA(Weight, Energy)

call stop_all(t_r,”Calculation of X matrix not the same as via stability matrix”)

call stop_all(t_r,”Calculation of Y matrix not the same as via stability matrix”)

Arguments

Type IntentOptional Attributes Name
real(kind=dp), intent(out) :: Weight
real(kind=dp), intent(out) :: Energy

Contents

Source Code


Source Code

    subroutine RunRPA_QBA(Weight, Energy)
        implicit none
        integer :: ierr, i, j, m, n, ex(2, maxExcit), ex2(2, maxExcit), mi_ind, nj_ind
        integer :: StabilitySize, lWork, info, i_p, m_p, v, mp_ip_ind, ic
        integer :: nJ(NEl), exflag, mu, id(2, maxExcit), a, i_ind, iunit, ia_ind
        integer(n_int) :: iLutHF(0:NIfTot)
        real(dp), intent(out) :: Weight, Energy
        real(dp) :: Energy_stab, Temp_real, norm, Energy2, H0tmp, Fii
        real(dp) :: X_norm, Y_norm
        HElement_t(dp) :: HDiagTemp, hel, hel1, hel2
        logical :: tAllExcitsFound, tParity
        real(dp), allocatable :: Stability(:, :), temp2(:, :), W2(:)
        real(dp), allocatable :: W(:), Work(:), S_half(:, :), temp(:, :)
        real(dp), allocatable :: X_stab(:, :), Y_stab(:, :), StabilityCopy(:, :)
        real(dp), allocatable :: X_chol(:, :), Y_chol(:, :)
        real(dp), allocatable :: AminB(:, :), AplusB(:, :), temp3(:, :)
        character(len=*), parameter :: t_r = "RunRPA_QBA"

        type(ExcitGenSessionType) :: session

        write(stdout, "(A)")
        write(stdout, "(A)") "**************************************"
        if (tDirectRPA) then
            write(stdout, "(A)") "*   Entering DIRECT RPA calculation  *"
        else
            write(stdout, "(A)") "*   Entering FULL RPA calculation    *"
        end if
        write(stdout, "(A)") "**************************************"
        write(stdout, "(A)")
        call neci_flush(stdout)

        HDiagTemp = get_helement(fDet, fDet, 0)
        Energy = real(HDiagTemp, dp)
        write(stdout, "(A,G25.10)") "Reference energy is: ", Energy

        !Quickly find correlation energy from MP2 for comparison.
        Temp_real = 0.0_dp
        tAllExcitsFound = .false.
        exflag = 3
        ex(:, :) = 0
        call EncodeBitDet(FDet, iLutHF)
        HDiagTemp = GetH0Element3(FDet)
        Fii = real(HDiagTemp, dp)

        do while (.true.)
            if (tReltvy) then
                call GenExcitations4(session, FDet, nJ, exFlag, Ex, tParity, tAllExcitsFound, .false.)
            else
                call GenExcitations3(FDet, iLutHF, nJ, exflag, Ex, tParity, tAllExcitsFound, .false.)
            end if
            if (tAllExcitsFound) exit !All excits found
            if (Ex(1, 2) == 0) then
                ic = 1
            else
                ic = 2
            end if
            hel = get_helement(FDet, nJ, ic, Ex, tParity)
            H0tmp = getH0Element3(nJ)
            H0tmp = Fii - H0tmp
            Temp_real = Temp_real + (hel**2) / H0tmp
        end do
        write(stdout, "(A,G25.10)") "For comparison, MP2 correlation energy is: ", Temp_real

        Weight = (0.0_dp)
        Energy = (0.0_dp)

        ov_space = (nBasis - NEl) * NEl
        virt_start = NEl + 1
        write(stdout, "(A,I8)") "1p-1h space is: ", ov_space

        allocate(A_mat(ov_space, ov_space), stat=ierr)
        allocate(B_mat(ov_space, ov_space), stat=ierr)
        if (ierr /= 0) call stop_all(t_r, "alloc Err")
        A_mat(:, :) = 0.0_dp
        B_mat(:, :) = 0.0_dp

        !First, construct A and B, which correspond to:
        !  <HF| [a*_i a_m [H, a*_n a_j]] |HF> = A
        ! -<HF| [a*_i a_m [H, a*_j a_n]] |HF> = B
        do j = 1, nel
            ex(1, 2) = Brr(j)   !Second index in integral
            ex2(2, 2) = Brr(j)
            do n = virt_start, nBasis
                nj_ind = ov_space_ind(n, j)
                ex(2, 2) = Brr(n)   !fourth index in integral
                ex2(1, 2) = Brr(n)
                do i = 1, nel
                    ex(2, 1) = Brr(i)   !Third index in integral
                    ex2(2, 1) = Brr(i)
                    do m = virt_start, nBasis
                        mi_ind = ov_space_ind(m, i)
                        ex(1, 1) = Brr(m)   !First index in integral
                        ex2(1, 1) = Brr(m)

                        if (tDirectRPA) then
                            !No exchange interactions
                            ! Obtain spatial rather than spin indices if required
                            id = gtID(ex)
                            ! Only non-zero contributions if Ms preserved in each term (consider
                            ! physical notation).
                            if ((G1(ex(1, 1))%Ms == G1(ex(2, 1))%Ms) .and. &
                                (G1(ex(1, 2))%Ms == G1(ex(2, 2))%Ms)) then
                                hel1 = get_umat_el(id(1, 1), id(1, 2), id(2, 1), &
                                                   id(2, 2))
                            else
                                hel1 = (0)
                            end if
                            A_mat(mi_ind, nj_ind) = real(hel1, dp)
                            !Now for B matrix
                            id = gtID(ex2)
                            ! Only non-zero contributions if Ms preserved in each term (consider
                            ! physical notation).
                            if ((G1(ex2(1, 1))%Ms == G1(ex2(2, 1))%Ms) .and. &
                                (G1(ex2(1, 2))%Ms == G1(ex2(2, 2))%Ms)) then
                                hel1 = get_umat_el(id(1, 1), id(1, 2), id(2, 1), &
                                                   id(2, 2))
                            else
                                hel1 = (0)
                            end if
                            B_mat(mi_ind, nj_ind) = real(hel1, dp)
                        else
                            !Full antisymmetrized integrals
                            HEl1 = sltcnd_excit(nJ, Excite_2_t(ex), .false.)
                            HEl2 = sltcnd_excit(nJ, Excite_2_t(ex2), .false.)
                            A_mat(mi_ind, nj_ind) = real(HEl1, dp)
                            B_mat(mi_ind, nj_ind) = real(HEl2, dp)
                        end if

                    end do
                end do
            end do
        end do

        !Now add the diagonal part to A
        do i = 1, nel
            do m = virt_start, nBasis
                mi_ind = ov_space_ind(m, i)

                A_mat(mi_ind, mi_ind) = A_mat(mi_ind, mi_ind) + (Arr(Brr(m), 2) - Arr(Brr(i), 2))
!                write(stdout,*) Arr(Brr(m),2)-Arr(Brr(i),2)
            end do
        end do

        !Check that A is hermitian and B is symmetric
        do i = 1, ov_space
            do j = 1, ov_space
                if (abs(B_mat(i, j) - B_mat(j, i)) > 1.0e-7_dp) then
                    write(stdout, *) i, j, B_mat(i, j), B_mat(j, i), abs(B_mat(i, j) - B_mat(j, i))
                    call stop_all(t_r, "B not symmetric")
                end if
                if (abs(A_mat(i, j) - A_mat(j, i)) > 1.0e-7_dp) then
                    write(stdout, *) i, j, A_mat(i, j), A_mat(j, i), abs(A_mat(i, j) - A_mat(j, i))

                    call stop_all(t_r, "A not hermitian")
                end if
            end do
        end do

        if (tStabilityAnalysis) then
            !Calculate stability analysis of HF solution, and from this, calculate RPA amplitudes
            !This should give identical results to other method, will be quite a bit slower, but also
            !gives information about the stability of the HF solution in all directions.

            write(stdout, "(A)")
            write(stdout, "(A)") "Calculating RPA from stability matrix..."

#ifdef CMPLX_
            call stop_all(t_r, "Not coded up for complex integrals. Bug ghb24")
#endif

            !Stability = ( A  B  )
            !            ( B* A* )
            StabilitySize = 2 * ov_space
            allocate(Stability(StabilitySize, StabilitySize), stat=ierr)
            Stability(:, :) = 0.0_dp
            Stability(1:ov_space, 1:ov_space) = A_mat(1:ov_space, 1:ov_space)
!Assume all integrals real to start with
!            Stability(ov_space+1:StabilitySize,1:ov_space)=conjg(B(1:ov_space,1:ov_space))
            Stability(ov_space + 1:StabilitySize, 1:ov_space) = B_mat(1:ov_space, 1:ov_space)
            Stability(1:ov_space, ov_space + 1:StabilitySize) = B_mat(1:ov_space, 1:ov_space)
!Assume all integrals real to start with
!            Stability(ov_space+1:StabilitySize,ov_space+1:StabilitySize)=conjg(A_mat(1:ov_space,1:ov_space))
            Stability(ov_space + 1:StabilitySize, ov_space + 1:StabilitySize) = A_mat(1:ov_space, 1:ov_space)

!            call writematrix(Stability,'Stability matrix')

            !Now diagonalize
            !Find optimal space
            allocate(StabilityCopy(StabilitySize, StabilitySize))
            StabilityCopy(:, :) = Stability(:, :)
            allocate(W(StabilitySize), stat=ierr)    !Eigenvalues of stability matrix
            allocate(Work(1))
            if (ierr /= 0) call stop_all(t_r, "alloc err")
            W(:) = 0.0_dp
            lWork = -1
            info = 0
            call dsyev('V', 'U', StabilitySize, Stability, StabilitySize, W, Work, lWork, info)
            if (info /= 0) call stop_all(t_r, 'workspace query failed')
            lwork = int(work(1)) + 1
            deallocate(work)
            allocate(work(lwork))
            call dsyev('V', 'U', StabilitySize, Stability, StabilitySize, W, Work, lwork, info)
            if (info /= 0) call stop_all(t_r, "Diag failed")
            deallocate(work)

            do i = 1, StabilitySize
                if (W(i) < 0.0_dp) then
                    write(stdout, *) i, W(i)
                    call stop_all(t_r, "HF solution not stable. Not local minimum. Recompute HF.")
                end if
            end do
            if (.not. tdirectRPA) then
                write(stdout, "(A)") "Stability matrix positive definite. HF solution is minimum. RPA stable"
            end if

            !Now compute S^(1/2), and transform into original basis
            allocate(S_half(StabilitySize, StabilitySize))
            S_half(:, :) = 0.0_dp
            do i = 1, StabilitySize
                S_half(i, i) = sqrt(W(i))
            end do
            allocate(temp(StabilitySize, StabilitySize))
            call dgemm('n', 'n', StabilitySize, StabilitySize, StabilitySize, 1.0_dp, Stability, StabilitySize, &
                       S_half, StabilitySize, 0.0_dp, temp, StabilitySize)
            call dgemm('n', 't', StabilitySize, StabilitySize, StabilitySize, 1.0_dp, temp, StabilitySize, Stability, &
                       StabilitySize, 0.0_dp, S_half, StabilitySize)
            !S_half is now S^1/2 in the original basis

            !Check this by squaring it.
            call dgemm('n', 't', StabilitySize, StabilitySize, StabilitySize, 1.0_dp, S_half, StabilitySize, S_half, &
                       StabilitySize, 0.0_dp, temp, StabilitySize)
            do i = 1, StabilitySize
                do j = 1, StabilitySize
                    if (abs(StabilityCopy(i, j) - temp(i, j)) > 1.0e-7_dp) then
                        call stop_all(t_r, 'S^1/2 not calculated correctly in original basis')
                    end if
                end do
            end do

            temp(:, :) = 0.0_dp
            do i = 1, ov_space
                temp(i, i) = 1.0_dp
            end do
            do i = ov_space + 1, StabilitySize
                temp(i, i) = -1.0_dp
            end do

            allocate(temp2(StabilitySize, StabilitySize))
            call dgemm('n', 'n', StabilitySize, StabilitySize, StabilitySize, 1.0_dp, S_half, StabilitySize, temp, &
                       StabilitySize, 0.0_dp, temp2, StabilitySize)
            call dgemm('n', 'n', StabilitySize, StabilitySize, StabilitySize, 1.0_dp, temp2, StabilitySize, S_half, &
                       StabilitySize, 0.0_dp, temp, StabilitySize)
            !Now diagonalize temp = S^(1/2) (1 0 \\ 0 -1 ) S^(1/2)

            lWork = -1
            allocate(W2(StabilitySize))
            allocate(Work(1))
            W2(:) = 0.0_dp
            call dsyev('V', 'U', StabilitySize, temp, StabilitySize, W2, Work, lWork, info)
            if (info /= 0) call stop_all(t_r, 'workspace query failed')
            lwork = int(work(1)) + 1
            deallocate(work)
            allocate(work(lwork))
            call dsyev('V', 'U', StabilitySize, temp, StabilitySize, W2, Work, lwork, info)
            if (info /= 0) call stop_all(t_r, "Diag failed")
            deallocate(work)
!            call writevector(W2,'Excitation energies')
            ! temp now holds the eigenvectors X~ Y~
            ! W2 runs over StabilitySize eigenvalues (ov_space*2). Therefor we expect redundant pairs of +-W2, corresponding
            ! to pairs of eigenvectors (X^v Y^v) and (X^v* Y^v*) (Same in real spaces).
            do i = 1, ov_space
                !This they are listed in order of increasing eigenvalue, we should be able to easily check that they pair up
                if (abs(W2(i) + W2(StabilitySize - i + 1)) > 1.0e-7_dp) then
                    write(stdout, *) i, StabilitySize - i + 1, W2(i), W2(StabilitySize - i + 1), abs(W2(i) - W2(StabilitySize - i + 1))
                    call stop_all(t_r, "Excitation energy eigenvalues do not pair")
                end if
            end do

            !We actually have everything we need for the energy already now. However, calculate X and Y too.
            !Now construct (X Y) = S^(-1/2) (X~ Y~)
            !First get S^(-1/2) in the original basis
            S_half(:, :) = 0.0_dp
            do i = 1, StabilitySize
                S_half(i, i) = -sqrt(W(i))
            end do
            call dgemm('n', 'n', StabilitySize, StabilitySize, StabilitySize, 1.0_dp, Stability, StabilitySize, S_half, &
                       StabilitySize, 0.0_dp, temp2, StabilitySize)
            call dgemm('n', 't', StabilitySize, StabilitySize, StabilitySize, 1.0_dp, temp2, StabilitySize, Stability, &
                       StabilitySize, 0.0_dp, S_half, StabilitySize)
            !S_half is now S^(-1/2) in the original basis

            !Now multiply S^(-1/2) (X~ y~)
            call dgemm('n', 'n', StabilitySize, StabilitySize, StabilitySize, 1.0_dp, S_half, StabilitySize, temp, &
                       StabilitySize, 0.0_dp, temp2, StabilitySize)

            !Check that eigenvectors are also paired.
            !Rotations among degenerate sets will screw this up though
!            do i=1,ov_space
!                write(stdout,*) "Eigenvectors: ",i,StabilitySize-i+1,W2(i),W2(StabilitySize-i+1)
!                do j=1,StabilitySize
!                    write(stdout,*) j,temp2(j,i),temp2(j,StabilitySize-i+1)
!                end do
!            end do

!            call writematrix(temp2,'X Y // Y X',.true.)
            !temp2 should now be a matrix of (Y X)
!                                            (X Y)
!           This is the other way round to normal, but due to the fact that our eigenvalues are ordered -ve -> +ve
!           TODO: Are the signs of this matrix correct?
            allocate(X_stab(ov_space, ov_space)) !First index is (m,i) compound index. Second is the eigenvector index.
            allocate(Y_stab(ov_space, ov_space))
            X_stab(:, :) = 0.0_dp
            Y_stab(:, :) = 0.0_dp
            !Put the eigenvectors corresponding to *positive* eigenvalues into the X_stab and Y_stab arrays.
            X_stab(1:ov_space, 1:ov_space) = temp2(1:ov_space, ov_space + 1:StabilitySize)
            Y_stab(1:ov_space, 1:ov_space) = -temp2(ov_space + 1:StabilitySize, ov_space + 1:StabilitySize)
            deallocate(temp2)

            !Normalize the eigenvectors appropriately
            do mu = 1, ov_space
                norm = 0.0_dp
                Y_norm = 0.0_dp
                X_norm = 0.0_dp
                do i = 1, ov_space
                    norm = norm + X_stab(i, mu) * X_stab(i, mu) - Y_stab(i, mu) * Y_stab(i, mu)
                    Y_norm = Y_norm + Y_stab(i, mu) * Y_stab(i, mu)
                    X_norm = X_norm + X_stab(i, mu) * X_stab(i, mu)
                end do
                if (norm <= 0.0_dp) then
                    write(stdout, *) "Norm^2 for vector ", mu, " is: ", norm
                    call stop_all(t_r, 'norm undefined')
                end if
                norm = sqrt(norm)
                do i = 1, ov_space
                    X_stab(i, mu) = X_stab(i, mu) / norm
                    Y_stab(i, mu) = Y_stab(i, mu) / norm
                end do
                if (Y_norm > X_norm / 2.0_dp) then
                    write(stdout, *) "Warning: hole amplitudes large for excitation: ", mu, &
                        " Quasi-boson approximation breaking down."
                    write(stdout, *) "Norm of X component: ", X_norm
                    write(stdout, *) "Norm of Y component: ", Y_norm
                end if
            end do
!            call writematrix(X_stab,'X',.true.)

            !Now check orthogonality
            call Check_XY_orthogonality(X_stab, Y_stab)

!            call writevector(W2,'Stab_eigenvalues')

            !Now check that we satisfy the original RPA equations
            !For the *positive* eigenvalue space (since we have extracted eigenvectors corresponding to this), check that:
!           ( A B ) (X) = E_v(X )
!           ( B A ) (Y)      (-Y)
            deallocate(temp)
            allocate(temp(StabilitySize, ov_space))
            temp(1:ov_space, 1:ov_space) = X_stab(:, :)
            temp(ov_space + 1:StabilitySize, 1:ov_space) = Y_stab(:, :)
            allocate(temp2(StabilitySize, ov_space))
            call dgemm('n', 'n', StabilitySize, ov_space, StabilitySize, 1.0_dp, StabilityCopy, StabilitySize, temp, &
                       StabilitySize, 0.0_dp, temp2, StabilitySize)
            do i = 1, ov_space
                do j = 1, ov_space
                    if (abs(temp2(j, i) - (W2(i + ov_space) * X_stab(j, i))) > 1.0e-6_dp) then
                        write(stdout, *) i, j, temp2(j, i), (W2(i + ov_space) * X_stab(j, i)), W2(i + ov_space)
                        call stop_all(t_r, "RPA equations not satisfied for positive frequencies in X matrix")
                    end if
                end do
            end do
            do i = 1, ov_space
                do j = 1, ov_space
                    if (abs(temp2(j + ov_space, i) - (-W2(i + ov_space) * Y_stab(j, i))) > 1.0e-6_dp) then
                        write(stdout, *) i, j, temp2(j + ov_space, i), (-W2(i + ov_space) * Y_stab(j, i)), -W2(i + ov_space)
                        call stop_all(t_r, "RPA equations not satisfied for positive frequencies in Y matrix")
                    end if
                end do
            end do
            deallocate(temp, temp2)

            !Is is also satisfied the other way around?
            !Check that we also satisfy (still for the *positive* eigenvalues):
!           ( A B ) (Y) = -E_v(Y )
!           ( B A ) (X)       (-X)
            allocate(temp(StabilitySize, ov_space))
            temp(1:ov_space, 1:ov_space) = Y_stab(:, :)
            temp(ov_space + 1:StabilitySize, 1:ov_space) = X_stab(:, :)
            allocate(temp2(StabilitySize, ov_space))
            call dgemm('n', 'n', StabilitySize, ov_space, StabilitySize, 1.0_dp, StabilityCopy, StabilitySize, temp, &
                       StabilitySize, 0.0_dp, temp2, StabilitySize)
            do i = 1, ov_space
                do j = 1, ov_space
                    if (abs(temp2(j, i) - (-W2(i + ov_space) * Y_stab(j, i))) > 1.0e-6_dp) then
                        call stop_all(t_r, "RPA equations not satisfied for negative frequencies in X matrix")
                    end if
                end do
            end do
            do i = 1, ov_space
                do j = 1, ov_space
                    if (abs(temp2(j + ov_space, i) - (W2(i + ov_space) * X_stab(j, i))) > 1.0e-6_dp) then
                        call stop_all(t_r, "RPA equations not satisfied for negative frequencies in Y matrix")
                    end if
                end do
            end do
            deallocate(temp, temp2)

            !TODO: Finally, check that we satisfy eq. 1 in the Scuseria paper for X and Y defined for positive eigenvalues...
            do i = ov_space + 1, StabilitySize
                do j = 1, StabilitySize
                    StabilityCopy(i, j) = -StabilityCopy(i, j)
                end do
            end do
            !Stability copy is now (A B // -B -A)
            allocate(temp(StabilitySize, ov_space))
            allocate(temp2(StabilitySize, ov_space))
            temp = 0.0_dp
            temp(1:ov_space, 1:ov_space) = X_stab(:, :)
            temp(ov_space + 1:StabilitySize, 1:ov_space) = Y_stab(:, :)
            call dgemm('n', 'n', StabilitySize, ov_space, StabilitySize, 1.0_dp, StabilityCopy, StabilitySize, temp, &
                       StabilitySize, 0.0_dp, temp2, StabilitySize)
            do i = 1, ov_space
                do j = 1, ov_space
                    if (abs(temp2(j, i) - (W2(i + ov_space) * X_stab(j, i))) > 1.0e-7_dp) then
                        call stop_all(t_r, "RPA equations not satisfied for X")
                    end if
                end do
            end do
            do i = 1, ov_space
                do j = ov_space + 1, StabilitySize
                    if (abs(temp2(j, i) - (W2(i + ov_space) * Y_stab(j - ov_space, i))) > 1.0e-7_dp) then
                        call stop_all(t_r, "RPA equations not satisfied for Y")
                    end if
                end do
            end do
            deallocate(temp, temp2)

            !Now calculate energy, in two different ways:
            !1. -1/2 Tr[A] + 1/2 sum_v E_v(positive)
            Energy_stab = 0.0_dp
            do i = 1, ov_space
                Energy_stab = Energy_stab + W2(ov_space + i) - A_mat(i, i)
            end do
            Energy_stab = Energy_stab / 2.0_dp

            if (tDirectRPA) then
                write(stdout, "(A,G25.10)") "Direct RPA energy from stability analysis (plasmonic RPA-TDA excitation energies): ", &
                    Energy_stab
            else
                write(stdout, "(A,G25.10)") "Full RPA energy from stability analysis (plasmonic RPA-TDA excitation energies): ", &
                    Energy_stab
            end if

            Energy_stab = 0.0_dp
            !E = 0.25 * Tr[BZ] where Z = Y X^-1

            allocate(temp2(ov_space, ov_space))
            temp2(:, :) = 0.0_dp
            !Find X^-1
            call d_inv(X_stab, temp2)
!            call writematrix(temp2,'X^-1',.true.)
            allocate(temp(ov_space, ov_space))
            !Find Z (temp)
            call dgemm('n', 'n', ov_space, ov_space, ov_space, 1.0_dp, Y_stab, ov_space, temp2, ov_space, 0.0_dp, temp, ov_space)
            !Find BZ (temp2)
            call dgemm('n', 'n', ov_space, ov_space, ov_space, 1.0_dp, B_mat, ov_space, temp, ov_space, 0.0_dp, temp2, ov_space)
            !Take trace of BZ
            do i = 1, ov_space
                Energy_stab = Energy_stab + temp2(i, i)
            end do
            Energy_stab = Energy_stab / 2.0_dp
            if (tDirectRPA) then
                write(stdout, "(A,G25.10)") "Direct RPA energy from stability analysis (Ring-CCD: 1/2 Tr[BZ]): ", Energy_stab
            else
                write(stdout, "(A,G25.10)") "Full RPA energy from stability analysis (Ring-CCD: 1/2 Tr[BZ]): ", Energy_stab
            end if

            Energy_stab = 0.0_dp
            do i = 1, ov_space
                Y_norm = 0.0_dp
                do j = 1, ov_space
                    Y_norm = Y_norm + Y_stab(j, i)**2
                end do
                Energy_stab = Energy_stab - W2(i + ov_space) * Y_norm
            end do
            if (tDirectRPA) then
                write(stdout, "(A,G25.10)") "Direct RPA energy from stability analysis (Y-matrix): ", Energy_stab
            else
                write(stdout, "(A,G25.10)") "Full RPA energy from stability analysis (Y-matrix): ", Energy_stab
            end if

            deallocate(W2, W, temp, temp2, StabilityCopy, Stability)

        end if

        write(stdout, *)
        write(stdout, "(A)") "Calculating RPA via Cholesky decomposition"
        !Now, we calculate the RPA amplitudes via consideration of the boson operators.
        !This will generally be quicker, and should give the same result.

        !Calculate A-B
        allocate(AminB(ov_space, ov_space))
        do i = 1, ov_space
            do j = 1, ov_space
                AminB(j, i) = A_mat(j, i) - B_mat(j, i)
            end do
        end do

        if (.true.) then
            !Optional
            !Check that AminB is positive definite - required for Cholesky decomposition
            allocate(temp(ov_space, ov_space))
            temp(:, :) = AminB(:, :)
            !Also check it is symmetric!
            do i = 1, ov_space
                do j = 1, ov_space
                    if (abs(AminB(i, j) - AminB(j, i)) > 1.0e-7_dp) then
                        call stop_all(t_r, "A - B matrix is not symmetric")
                    end if
                end do
            end do

            !Now diagonalise
            lWork = -1
            allocate(W(ov_space))
            allocate(Work(1))
            W(:) = 0.0_dp
            call dsyev('V', 'U', ov_space, temp, ov_space, W, Work, lWork, info)
            if (info /= 0) call stop_all(t_r, 'workspace query failed')
            lwork = int(work(1)) + 1
            deallocate(work)
            allocate(work(lwork))
            call dsyev('V', 'U', ov_space, temp, ov_space, W, Work, lWork, info)
            if (info /= 0) call stop_all(t_r, "Diag failed")
            deallocate(work)
            do i = 1, ov_space
                if (W(i) < 0.0_dp) then
                    call writevector(W, 'AminB eigenvalues')
                    call stop_all(t_r, "A-B not positive definite - cannot do cholesky decomposition")
                end if
            end do
            deallocate(temp, W)
        end if

        !Construct triangular matrices via cholesky decomposition
        call dpotrf('U', ov_space, AminB, ov_space, info)
        if (info /= 0) call stop_all(t_r, 'Cholesky decomposition failed.')
        !Now set lower triangular part to zero
        do i = 1, ov_space
            do j = 1, i - 1
                AminB(i, j) = 0.0_dp
            end do
        end do

        if (.true.) then
            !Optional
!            call writematrix(AminB,'T')
            !Check cholesky decomposition successful
            allocate(temp(ov_space, ov_space))
            call dgemm('T', 'N', ov_space, ov_space, ov_space, 1.0_dp, AminB, ov_space, AminB, ov_space, 0.0_dp, temp, ov_space)
            do i = 1, ov_space
                do j = 1, ov_space
                    if (abs(temp(i, j) - (A_mat(i, j) - B_mat(i, j))) > 1.0e-7_dp) then
                        call stop_all(t_r, 'Cholesky decomposition not as expected')
                    end if
                end do
            end do
            deallocate(temp)
        end if

        allocate(AplusB(ov_space, ov_space), stat=ierr)
        do i = 1, ov_space
            do j = 1, ov_space
                AplusB(j, i) = A_mat(j, i) + B_mat(j, i)
            end do
        end do

        allocate(temp(ov_space, ov_space))
        call dgemm('N', 'N', ov_space, ov_space, ov_space, 1.0_dp, AminB, ov_space, AplusB, ov_space, 0.0_dp, temp, ov_space)
        call dgemm('N', 'T', ov_space, ov_space, ov_space, 1.0_dp, temp, ov_space, AminB, ov_space, 0.0_dp, AplusB, ov_space)
        deallocate(temp)
        !Check T (A + B) T^T is actually symmetric
        do i = 1, ov_space
            do j = 1, ov_space
                if (abs(AplusB(i, j) - AplusB(j, i)) > 1.0e-7_dp) then
                    call stop_all(t_r, 'Not symmetric')
                end if
            end do
        end do

        !AplusB is now actually T (A + B) T^T
        !Diagonalize this
        lWork = -1
        allocate(W(ov_space))
        allocate(Work(1))
        W(:) = 0.0_dp
        call dsyev('V', 'U', ov_space, AplusB, ov_space, W, Work, lWork, info)
        if (info /= 0) call stop_all(t_r, 'workspace query failed')
        lwork = int(work(1)) + 1
        deallocate(work)
        allocate(work(lwork))
        call dsyev('V', 'U', ov_space, AplusB, ov_space, W, Work, lWork, info)
        if (info /= 0) call stop_all(t_r, "Diag failed")
        deallocate(work)
        do i = 1, ov_space
            if (W(i) < 0.0_dp) then
                call stop_all(t_r, "Excitation energies^2 not positive. Error in diagonalization.")
            end if
        end do
!        call writevector(sqrt(W),'Eigenvalues')

        !Excitation energies are now the +- sqrt of eigenvalues
        !Construct W^(-1/2) T^T R   (temp)
        !and W^(1/2) T^-1 R (temp2)
        allocate(temp(ov_space, ov_space))
        call dgemm('T', 'N', ov_space, ov_space, ov_space, 1.0_dp, AminB, ov_space, AplusB, ov_space, 0.0_dp, temp, ov_space)
        do i = 1, ov_space
            !Mulitply each column by corresponding eigenvalue^(-1/2). Only deal with positive eigenvalues here
            do j = 1, ov_space
                temp(j, i) = temp(j, i) * (1.0_dp / (sqrt(sqrt(W(i)))))
            end do
        end do

        allocate(temp2(ov_space, ov_space))
        allocate(temp3(ov_space, ov_space))  !Temp3 will hold the inverse of the T matrix temporarily.

        call d_inv(AminB, temp3)
        call dgemm('N', 'N', ov_space, ov_space, ov_space, 1.0_dp, temp3, ov_space, AplusB, ov_space, 0.0_dp, temp2, ov_space)
        deallocate(temp3)

        do i = 1, ov_space
            !Mulitply each column by corresponding eigenvalue^(1/2). Only deal with positive eigenvalues here
            do j = 1, ov_space
                temp2(j, i) = temp2(j, i) * (sqrt(sqrt(W(i))))
            end do
        end do

        allocate(X_Chol(ov_space, ov_space))
        allocate(Y_Chol(ov_space, ov_space))
        do i = 1, ov_space
            do j = 1, ov_space
                X_Chol(j, i) = 0.5_dp * (temp(j, i) + temp2(j, i))
                Y_Chol(j, i) = 0.5_dp * (temp(j, i) - temp2(j, i))
            end do
        end do
!        do i=1,ov_space
!            do j=1,ov_space
!                if(abs(Y_Chol(i,j)).gt.1.0e-7) then
!                    write(stdout,*) "Found non-zero Y matrix value..."
!                end if
!            end do
!        end do

        !Y_Chol and X_Chol now cover all eigenvectors.
        !Eigensystem can be represented as:
        ! ( X ) val=sqrt(W)     and     ( Y* ) val=-sqrt(W)
        ! ( Y )                         ( X* )

        call Check_XY_orthogonality(X_Chol, Y_Chol)

        !Are X and Y vectors the same as from the stability matrix?
        !I guess there will be different rotation among degenerate sets, so not a well defined comparison.
!        if(tStabilityAnalysis) then
!            do i=1,ov_space
!                do j=1,ov_space
!                    if(abs(X_Chol(j,i)-X_Stab(j,i)).gt.1.0e-7) then
!                        write(stdout,*) j,i,X_Chol(j,i),X_Stab(j,i)
!!                        call stop_all(t_r,"Calculation of X matrix not the same as via stability matrix")
!                    end if
!                    if(abs(Y_Chol(j,i)-Y_Stab(j,i)).gt.1.0e-7) then
!                        write(stdout,*) j,i,Y_Chol(j,i),Y_Stab(j,i)
!!                        call stop_all(t_r,"Calculation of Y matrix not the same as via stability matrix")
!                    end if
!                end do
!            end do
!        end if

        !Now check that we satisfy the original RPA equations
        !For the *positive* eigenvalue space (since we have extracted eigenvectors corresponding to this), check that:
!           ( A B ) (X) = E_v(X )
!           ( B A ) (Y)      (-Y)
        deallocate(temp, temp2)
        allocate(Stability(StabilitySize, StabilitySize))
        Stability(:, :) = 0.0_dp
        Stability(1:ov_space, 1:ov_space) = A_mat(1:ov_space, 1:ov_space)
        Stability(ov_space + 1:StabilitySize, 1:ov_space) = B_mat(1:ov_space, 1:ov_space)
        Stability(1:ov_space, ov_space + 1:StabilitySize) = B_mat(1:ov_space, 1:ov_space)
        Stability(ov_space + 1:StabilitySize, ov_space + 1:StabilitySize) = A_mat(1:ov_space, 1:ov_space)
        allocate(temp(StabilitySize, ov_space))
        temp(1:ov_space, 1:ov_space) = X_Chol(:, :)
        temp(ov_space + 1:StabilitySize, 1:ov_space) = Y_Chol(:, :)
        allocate(temp2(StabilitySize, ov_space))
        call dgemm('n', 'n', StabilitySize, ov_space, StabilitySize, 1.0_dp, Stability, StabilitySize, temp, &
                   StabilitySize, 0.0_dp, temp2, StabilitySize)
        do i = 1, ov_space
            do j = 1, ov_space
                if (abs(temp2(j, i) - (sqrt(W(i)) * X_Chol(j, i))) > 1.0e-6_dp) then
                    write(stdout, *) i, j, temp2(j, i), (sqrt(W(i)) * X_Chol(j, i)), sqrt(W(i))
                    call stop_all(t_r, "RPA equations not satisfied for positive frequencies in X matrix")
                end if
            end do
        end do
        do i = 1, ov_space
            do j = 1, ov_space
                if (abs(temp2(j + ov_space, i) - (-sqrt(W(i)) * Y_Chol(j, i))) > 1.0e-6_dp) then
                    write(stdout, *) i, j, temp2(j + ov_space, i), (-sqrt(W(i)) * Y_Chol(j, i)), -sqrt(W(i))
                    call stop_all(t_r, "RPA equations not satisfied for positive frequencies in Y matrix")
                end if
            end do
        end do
        deallocate(temp, temp2)

        !Is is also satisfied the other way around?
        !Check that we also satisfy (still for the *positive* eigenvalues):
!           ( A B ) (Y) = -E_v(Y )
!           ( B A ) (X)       (-X)
        allocate(temp(StabilitySize, ov_space))
        temp(1:ov_space, 1:ov_space) = Y_Chol(:, :)
        temp(ov_space + 1:StabilitySize, 1:ov_space) = X_Chol(:, :)
        allocate(temp2(StabilitySize, ov_space))
        call dgemm('n', 'n', StabilitySize, ov_space, StabilitySize, 1.0_dp, Stability, StabilitySize, temp, &
                   StabilitySize, 0.0_dp, temp2, StabilitySize)
        do i = 1, ov_space
            do j = 1, ov_space
                if (abs(temp2(j, i) - (-sqrt(W(i)) * Y_Chol(j, i))) > 1.0e-6_dp) then
                    call stop_all(t_r, "RPA equations not satisfied for negative frequencies in X matrix")
                end if
            end do
        end do
        do i = 1, ov_space
            do j = 1, ov_space
                if (abs(temp2(j + ov_space, i) - (sqrt(W(i)) * X_Chol(j, i))) > 1.0e-6_dp) then
                    call stop_all(t_r, "RPA equations not satisfied for negative frequencies in Y matrix")
                end if
            end do
        end do
        deallocate(temp, temp2)

        !TODO: Finally, check that we satisfy eq. 1 in the Scuseria paper for X and Y defined for positive eigenvalues...
        do i = ov_space + 1, StabilitySize
            do j = 1, StabilitySize
                Stability(i, j) = -Stability(i, j)
            end do
        end do
        !Stability copy is now (A B // -B -A)
        allocate(temp(StabilitySize, ov_space))
        allocate(temp2(StabilitySize, ov_space))
        temp = 0.0_dp
        temp(1:ov_space, 1:ov_space) = X_Chol(:, :)
        temp(ov_space + 1:StabilitySize, 1:ov_space) = Y_Chol(:, :)
        call dgemm('n', 'n', StabilitySize, ov_space, StabilitySize, 1.0_dp, Stability, StabilitySize, temp, &
                   StabilitySize, 0.0_dp, temp2, StabilitySize)
        do i = 1, ov_space
            do j = 1, ov_space
                if (abs(temp2(j, i) - (sqrt(W(i)) * X_Chol(j, i))) > 1.0e-7_dp) then
                    call stop_all(t_r, "RPA equations not satisfied for X")
                end if
            end do
        end do
        do i = 1, ov_space
            do j = ov_space + 1, StabilitySize
                if (abs(temp2(j, i) - (sqrt(W(i)) * Y_Chol(j - ov_space, i))) > 1.0e-7_dp) then
                    call stop_all(t_r, "RPA equations not satisfied for Y")
                end if
            end do
        end do
        deallocate(temp, temp2, Stability)

        Energy2 = real(HDiagTemp, dp)
        norm = 0.0_dp
        do i = 1, ov_space
            norm = norm + A_mat(i, i)
        end do
        Energy2 = Energy2 - norm / 2.0_dp

        norm = 0.0_dp
        do i = 1, ov_space
            !Run over positive eigenvalue pairs
            norm = norm + sqrt(W(i))
        end do
        Energy2 = Energy2 + norm / 2.0_dp
        if (tDirectRPA) then
            write(stdout, "(A,G25.10)") "Direct RPA energy (plasmonic RPA-TDA excitation energies): ", &
                Energy2 - real(HDiagTemp, dp)
        else
            write(stdout, "(A,G25.10)") "Full RPA energy (plasmonic RPA-TDA excitation energies): ", &
                Energy2 - real(HDiagTemp, dp)
        end if

        Energy = 0.0_dp
        allocate(temp(ov_space, ov_space))
        allocate(temp2(ov_space, ov_space))
        temp(:, :) = 0.0_dp
        call d_inv(X_Chol, temp)
        call dgemm('n', 'n', ov_space, ov_space, ov_space, 1.0_dp, Y_Chol, ov_space, temp, ov_space, 0.0_dp, temp2, ov_space)
        call dgemm('n', 'n', ov_space, ov_space, ov_space, 1.0_dp, B_Mat, ov_space, temp2, ov_space, 0.0_dp, temp, ov_space)
        do i = 1, ov_space
            Energy = Energy + temp(i, i)
        end do
        Energy = Energy / 2.0_dp
        if (tDirectRPA) then
            write(stdout, "(A,G25.10)") "Direct RPA energy (Ring-CCD: 1/2 Tr[BZ]): ", Energy
        else
            write(stdout, "(A,G25.10)") "Full RPA energy (Ring-CCD: 1/2 Tr[BZ]): ", Energy
        end if
        deallocate(temp, temp2)

        HDiagTemp = get_helement(fDet, fDet, 0)
        Energy = real(HDiagTemp, dp)
        do v = 1, ov_space
            norm = 0.0_dp
            do i = 1, ov_space
                norm = norm + (abs(Y_Chol(i, v)))**2.0_dp
            end do
            Energy = Energy - norm * sqrt(W(v))
        end do
        if (tDirectRPA) then
            write(stdout, "(A,G25.10)") "Direct RPA energy (Y matrix): ", Energy - real(HDiagTemp, dp)
        else
            write(stdout, "(A,G25.10)") "Full RPA energy (Y matrix): ", Energy - real(HDiagTemp, dp)
        end if

        write(stdout, "(A)")
        write(stdout, "(A)") "RPA calculation completed successfully"
        write(stdout, "(A)")

        write(stdout, "(A)") "Calculating 1RDM..."
        allocate(OccNumbers(nBasis))    !This is the GS 1RDM, which is diagonal in RPA

        OccNumbers(:) = 0.0_dp

        !For occupied orbital: Gamma(i,i) = 1 - 1/2 \sum_{mu,a} |Y^{mu}_ia|^2
        !For virtual orbital:  Gamma(a,a) =     1/2 \sum_{mu,i} |Y^{mu}_ia|^2

        do i = 1, nel
            do mu = 1, ov_space
                do a = virt_start, nBasis
                    ia_ind = ov_space_ind(a, i)
                    OccNumbers(i) = OccNumbers(i) + 0.5_dp * abs(Y_Chol(ia_ind, mu))**2.0_dp
                end do
            end do
            OccNumbers(i) = 1.0_dp - OccNumbers(i)
        end do

        do a = virt_start, nBasis
            do mu = 1, ov_space
                do i = 1, nel
                    ia_ind = ov_space_ind(a, i)
                    OccNumbers(a) = OccNumbers(a) + 0.5_dp * abs(Y_Chol(ia_ind, mu))**2.0_dp
                end do
            end do
        end do

        write(stdout, "(A)") "Writing RPA occupation numbers to file: RPA_OccNumbers"
        write(stdout, "(A)") ""
        iunit = get_free_unit()
        open(iunit, file='RPA_OccNumbers', status='unknown')
        write(iunit, "(A)") "# Orbital(Energy_order)  Orbital   Fock eigenvalue   RPA_Occupation"
        do i = 1, nBasis
            i_ind = Brr(i)
            write(iunit, "(2I9,2G25.10)") i, i_ind, Arr(i_ind, 2), OccNumbers(i)
        end do
        close(iunit)

        deallocate(A_mat, B_mat, X_Chol, Y_Chol, OccNumbers)

    end subroutine RunRPA_QBA